inverse index lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “inverse_index_lab.py”. While we encourage you to complete the
Ungraded Problems, they do not require any entry into your stencil file.

In this lab, you will create a simple search engine. One procedure will be responsible for reading in a
large collection of documents and indexing them to facilitate quick responses to subsequent search queries.
Other procedures will use the index to answer the search queries.

The main purpose of this lab is to give you more Python programming practice and introduce modules
and control structures.

1 Using existing modules

Python comes with an extensive library, consisting of components called modules. In order to use the
definitions defined in a module, you must either import the module itself or import the specific definitions
you want to use from the module. If you import the module, you must refer to a procedure or variable
defined therein by using its qualified name, i.e. the name of the module followed by a dot followed by the
short name.

For example, the library math includes many mathematical procedures such as square-root, cosine, and
natural logarithm, and mathematical constants such as 7 and e.

Ungraded Task: Import the math module using the command

>>> import math

Call the built-in procedure help(modulename) on the module you have just imported:
>>> help(math)

This will cause the console to show documentation on the module. You can move forward by typing £ and
backward by typing b, and you can quit looking at the documentation by typing q.

Use procedures defined by the math module to compute the square root of 3, and raise it to the power of
2. The result might not be what you expect. Keep in mind that Python represents nonintegral real numbers
with limited precision, so the answers it gives are only approximate.

Next compute the square root of -1, the cosine of 7, and the natural logarithm of e.

The short name of the square-root function is sqrt so its qualified name is math.sqrt. The short names
of the cosine and the natural logarithm are cos and log, and the short names of 7 and e are pi and e.

The second way to bring a a procedure or variable from a module into your Python environment is to
specifically import the item itself from the module, using the syntax
from (module name) import (short name)

after which you can refer to it using its short name.

Task 1: The module random defines a procedure randint (a,b) that returns an integer chosen uniformly
at random from among {a,a + 1,...,b}. Import this procedure using the command

>>> from random import randint

Try calling randint a few times. Then write a one-line procedure movie_review(name) that takes as
argument a string naming a movie, and returns a string review selected uniformly at random from among
three or more alternatives (Suggestions: “See it!", “A gem!”, “Ideological claptrap!”)

2 Creating your own modules

You can create your own modules simply by entering the text of your procedure definitions and variable
assignments in a file whose name consists of the module name you choose, followed by .py. Use a text editor
such as kate or vim or, my personal favorite, emacs.

The file can itself contain import statements, enabling the code in the file to make use of definitions from
other modules.

If the file is in the current working directory when you start up Python, you can import the module.!

Task 2: Previously, you wrote procedures dict2list(dct, keylist) and list2dict(L, keylist).
Edit the file dictutil.py, replacing each occurence of pass with the appropriate statement. Import this
module, and test the procedures. We will have occasion to use this module in the future.

2.1 Reloading

You will probably find it useful when debugging your own module to be able to edit it and load the edited
version into your current Python session. Python provides the procedure reload(module) in the module
imp. To import this procedure, use the command

>>> from imp import reload

Note that if you import a specific definition using the from ... import ... syntax then you cannot
reload it.

Task 3: Edit dictutil.py. Define a procedure listrange2dict (L) with this spec:
e jnput: alist L
e output: a dictionary that, for ¢ = 0,1,2,...,len(L) — 1, maps i to L[i]

You can write this procedure from scratch or write it in terms of list2dict(L, keylist). Use the
statement

>>> reload(dictutil)

to reload your module, and then test listrange2dict on the list [’A’,’B’,’C’].

IThere is an environment variable, PYTHONPATH, that governs the sequence of directories in which Python searches for modules.

3 Loops and conditional statements

Comprehensions are not the only way to loop over elements of a set, list, dictionary, tuple, range, or zip.
For the traditionalist programmer, there are for-loops: for x in {1,2,3}: print(x). In this statement,
the variable x is bound to each of the elements of the set in turn, and the statement print(x) is executed
in the context of that binding.
There are also while-loops: while v[i] == 0: i = i+1.
There are also conditional statements (as opposed to conditional expressions): if x > 0: print("positive").

4 Grouping in Python using indentation

You will sometimes need to define loops or conditional statements in which the body consists of more than
one statement. Most programming languages have a way of grouping a series of statements into a block. For
example, ¢ and Java use curly braces around the sequence of statements.

Python uses indentation to indicate grouping of statements. All the statements forming a block
should be indented the same number of spaces. Python is very picky about this. Python files we
provide will use four spaces to indent. Also, don’t mix tabs with spaces in the same block. In fact, I
recommend you avoid using tabs for indentation with Python.

Statements at the top level should have no indentation. The group of statements forming the body of a
control statement should be indented more than the control statement. Here’s an example:

for x in [1,2,3]:
y = x*x
print(y)

This prints 1, 4, and 9. (After the loop is executed, y remains bound to 9 and x remains bound to 3.)

Ungraded Task: Type the above for-loop into Python. You will see that, after you enter the first line,
Python prints an ellipsis (...) to indicate that it is expecting an indented block of statements. Type a space
or two before entering the next line. Python will again print the ellipsis. Type a space or two (same number
of spaces as before) and enter the next line. Once again Python will print an ellipsis. Press enter, and Python
should execute the loop.

The same use of indentation can be used used in conditional statements and in procedure definitions.

def quadratic(a,b,c):
discriminant = math.sqrt(b*b - 4*axc)
return ((-b + discriminant)/(2*a), (-b - discriminant)/(2%*a))

You can nest as deeply as you like:

def print_greater_quadratic(L):
for a, b, ¢ in L:
plus, minus = quadratic(a, b, c)
if plus > minus:
print(plus)
else:
print (minus)

Many text editors help you handle indentation when you write Python code. For example, if you are
using emacs to edit a file with a . py suffix, after you type a line ending with a colon and hit return, emacs will
automatically indent the next line the proper amount, making it easy for you to start entering lines belonging
to a block. After you enter each line and hit Return, emacs will again indent the next line. However, emacs
doesn’t know when you have written the last line of a block; when you need to write the first line outside of
that block, you should hit Delete to unindent.

5 Breaking out of a loop

As in many other programming languages, when Python executes the break statement, the loop execution is
terminated, and execution continues immediately after the innermost nested loop containing the statement.

>>> s = "There is no spoon."
>>> for i in range(len(s)):
if s[i] == ’'n’:
break
>>> i
9

6 Reading from a file

In Python, a file object is used to refer to and access a file. The expression
open(’stories_small.txt’) returns a file object that allows access to the file with the name given. You
can use a comprehension or for-loop to loop over the lines in the file

>>> f = open(’stories_big.txt’)
>>> for line in f:
print(line)

or, if the file is not too big, use 1ist(:) to directly obtain a list of the lines in the file, e.g.

>>> f = open(’stories_small.txt’)
>>> stories = list(f)

>>> len(stories)

1099

You can extract lines from a file object only once; if you want to read from the file again, you need to create
a new file object by calling open again.

7 Mini-search engine

Now, for the core of the lab, you will be writing a program that acts as a sort of search engine. Given a file
of “documents” where each document occupies a line of the file, you are to build a data structure (called
an inverse indez) that allows you to identify those documents containing a given word. We will identify the
documents by document number: the document represented by the first line of the file is document number 0,
that represented by the second line is document number 1, and so on.

You can use a method defined for strings, split (), which splits the string at spaces into substrings, and
returns a list of these substrings:

>>> mystr = ’Ask not what you can do for your country.’
>>> mystr.split()
[’Ask’, ’not’, ’what’, ’you’, ’can’, ’do’, ’for’, ’your’, ’country.’]

Note that the period is considered part of a substring. To make this lab easier, we have prepared a file of
documents in which punctuation are separated from words by spaces.

Often one wants to iterate through the elements of a list while keeping track of the indices of the elements.
Python provides enumerate (L) for this purpose.

>>> list(enumerate([’A’,’B’,’C’]))
(o, ’A’), (1, °B?), (2, ’C’)]
>>> [i*x for (i,x) in enumerate([10,20,30,40,50])]

[0, 20, 60, 120, 200]
>>> [ixs for (i,s) in enumerate([’A’,’B’,’C’,’D’,’E’])]
[:7, ’B’,)CCJ’ ’DDD’, ;EEEE;]

Task 4: Write a procedure makeInverseIndex(strlist) that, given a list of strings (documents), returns
a dictionary that maps each word to the set consisting of the document numbers of documents in which that
word appears. This dictionary is called an inverse index. (Hint: use enumerate.)

Task 5: Write a procedure orSearch(inverseIndex, query) which takes an inverse index and a list of
words query, and returns the set of document numbers specifying all documents that conain any of the
words in query.

Task 6: Write a procedure andSearch(inverseIndex, query) which takes an inverse index and a list
of words query, and returns the set of document numbers specifying all documents that contain all of the
words in query.

Try out your procedures on these two files:
e stories_small.txt

e stories_big.txt

