
secret sharing lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “secret sharing lab.py”. While we encourage you to complete the
Ungraded Problems, they do not require any entry into your stencil file.

1 Threshold Secret-Sharing

Recall we had a method for splitting a secret into two pieces so that both were required to recover the secret.
The method used GF (2). We could generalize this to split the secret among, say, four teaching assistants
(TAs), so that jointly they could recover the secret but any three cannot. However, it is risky to rely on all
four TAs showing up for a meeting.

We would instead like a threshold secret-sharing scheme, a scheme by which, say, we could share a secret
among four TAs so that any three TAs could jointly recover the secret, but any two TAs could not. There
are such schemes that use fields other than GF (2), but let’s see if we can do it using GF (2).

1 First attempt

Here’s a (doomed) attempt. I work with five 3-vectors over GF (2): a0,a1,a2,a3,a4. These vectors are
supposed to satisfy the following requirement:

Requirement: every set of three are linearly independent.

These vectors are part of the scheme; they are known to everybody. Now suppose I want to share a one-bit
secret s among the TAs. I randomly select a 3-vector u such that a0 ·u = s. I keep u secret, but I compute
the other dot-products:

β1 = a1 · u
β2 = a2 · u
β3 = a3 · u
β4 = a4 · u

Now I give the bit β1 to TA 1, I give β2 to TA 2, I give β3 to TA 3, and I give β4 to TA 4. The bit given to
a TA is called the TA’s share.

First I argue that this scheme allows any three TAs to combine their shares to recover the secret.
Suppose TAs 1, 2, and 3 want to recover the secret. They solve the matrix-vector equation a1

a2

a3

 x1
x2
x3

 =

 β1
β2
β3


The three TAs know the right-hand side bits, so can construct this matrix-vector equation. Since the
vectors a1,a2,a3 are linearly independent, the rank of the matrix is three, so the columns are also linearly
independent. The matrix is square and its columns are linearly independent, so it is invertible, so there is a

1



unique solution. The solution must therefore be the secret vector u. The TAs use solve to recover u, and
take the dot-product with a0 to get the secret s.

Similarly, any three TAs can combine their shares to recover the secret vector u and thereby get the
secret.

Now suppose two rogue TAs, TA 1 and TA 2, decide they want to obtain the secret without involving
either of the other TAs. They know β1 and β2. Can they use these to get the secret s? The answer is no:
their information is consistent with both s = 0 and s = 1: Since the matrix a0

a1

a2


is invertible, each of the two matrix equations a0

a1

a2

 x0
x1
x2

 =

 0
β1
β2


 a0

a1

a2

 x0
x1
x2

 =

 1
β1
β2


has a unique solution. The solution to the first equation is a vector v such that a0 · v = 0, and the solution
to the second equation is a vector v such that a0 · v = 1.

2 Scheme that works

So the scheme seems to work. What’s the trouble?
The trouble is that there are no five 3-vectors satisfying the requirement. There are just not enough

3-vectors over GF (2) to make it work.
Instead, we go to bigger vectors. We will seek ten 6-vectors a0, b0,a1, b1,a2, b2,a3, b3,a4, b4 over GF (2).

We think of them as forming five pairs:

• Pair 0 consists of a0 and b0,

• Pair 1 consists of a1 and b1,

• Pair 2 consists of a2 and b2,

• Pair 3 consists of a3 and b3, and

• Pair 4 consists of a4 and b4.

The requirement is as follows:

Requirement: For any three pairs, the corresponding six vectors are linearly independent.

To use this scheme to share two bits s and t, I choose a secret 6-vector u such that a0 ·u = s and b0 ·u = t.
I then give TA 1 the two bits β1 = a1 ·u and γ1 = b1 ·u, I give TA 2 the two bits β2 = a2 ·u and γ2 = b2 ·u,
and so on. Each TA’s share thus consists of a pair of bits.

2



Recoverability: Any three TAs jointly can solve a matrix-vector equation with a 6 × 6 matrix to obtain
u, whence they can obtain the secret bits s and t. Suppose, for example, TAs 1, 2, and 3 came together.
Then they would solve the equation

a1

b1
a2

b2
a3

b3




x

 =


β1
γ1
β2
γ2
β3
γ3


to obtain u and thereby obtain the secret bits. Since the vectors a1, b1,a2, b2,a3, b3 are linearly independent,
the matrix is invertible, so there is a unique solution to this equation.

Secrecy: However, for any two TAs, the information they possess is consistent with any assignment to the
two secret bits s and t. Suppose TAs 1 and 2 go rogue and try to recover s and t. They possess the bits
β1, γ1, β2, γ2. Are these bits consistent with s = 0 and t = 1? They are if there is a vector u that solves the
equation 

a0

b0
a1

b1
a2

b2




x

 =


0
1
β1
γ1
β2
γ2


where the first two entries of the right-hand side are the guessed values of s and t.

Since the vectors a0, b0,a1, b1,a2, b2 are linearly independent, the matrix is invertible, so there is a
unique solution. Similarly, no matter what you put in the first two entries of the right-hand side, there is
exactly one solution. This shows that the shares of TAs 1 and 2 tell them nothing about the true values of
s and t.

3 Implementing the scheme

To make thing simple, we will define a0 = [1, 1, 0, 1, 0, 1] and b0 = [1, 1, 0, 0, 0, 1]:

>>> a0 = list2vec([one, one, 0, one, 0, one])

>>> b0 = list2vec([one, one, 0, 0, 0, one])

Remember, list2vec is defined in the module vecutil and one is defined in GF2.

4 Generating u

Task 1: Write a procedure choose secret vector(s,t) with the following spec:

• input: GF (2) field elements s and t (i.e. bits)

• output: a random 6-vector u such that a0 · u = s and b0 · u = t

Why must the output be random? Suppose that the procedure was not random: the output vector u was
determined by the two secret bits. The TA could use the information to make a good guess as to the value
of u and therefore the values of s and t.

For this task, you can use Python’s random module to generate pseudorandom elements of GF (2).

>>> import random

>>> def randGF2(): return random.randint(0,1)*one

3



However, be warned: Don’t use this method if you really intend to keep a secret. Python’s random module
does not generate cryptographically secure pseudorandom bits. In particular, a rogue TA could use his
shares to actually figure out the state of the pseudorandom-number generator, predict future pseudorandom
numbers, and break the security of the scheme. (Figuring out the state of the pseudorandom-number
generator uses—you guessed it—linear algebra over GF (2).)

5 Finding vectors that satisfy the requirement

Task 2: We have decided that a0 = [1, 1, 0, 1, 0, 1] and b0 = [1, 1, 0, 0, 0, 1]. Your goal is to select vectors
a1, b1,a2, b2,a3, b3,a4, b4 over GF (2) so that the requirement is satisfied:

For any three pairs, the corresponding six vectors are linearly independent.

Hint: try selecting eight random vectors and testing whether they satisfy the requirement. Repeat until
you succeed. Use the independence module.

6 Sharing a string

Now that we can share two bits, we can share an arbitrarily long string. For this part, you don’t have to do
any work; it is provided simply for those who are interested.

The module bitutil defines procedures

• str2bits(str), which converts a string to a list of GF (2) values

• bits2str(bitlist), the inverse of str2bits

• bits2mat(bitlist, nrows), which uses the bits in bitlist to populate a matrix with nrows rows.

• mat2bits(M), which is the inverse of bits2mat

You can use str2bits to transform a string, say "Rosebud", into a list of bits, and use bits2mat to
transform the list of bits to a 2 × n matrix.

For each column of this matrix, you can use the procedure choose secret vector(s,t) of Task 1 to
obtain a corresponding secret vector u, constructing a matrix U whose columns are the secret vectors.

To compute the shares of the TAs, multiply the matrix

a0

b0
a1

b1
a2

b2
b3
a4

b4


times U . The second and third rows of the product form the share for TA 1, and so on.

4


