hwb

Coding the Matrix, Summer 2013

Please fill out the stencil file named “hw5.py”. While we encourage you to complete the Ungraded Problems,
they do not require any entry into your stencil file.

Ungraded Problem: In this problem, you will practice using the Exchange Lemma to transform one
spanning forest into another.

Consider the graphs below. Use the Exchange Lemma for spanning trees to transform a spanning forest
Fy = {(W, K), (W,M), (PW), (K,A)} on the left into the spanning forest Fy = {(P,K), (P,M), (P,A), (W,A)}
on the right. You should draw forests Fp, Fy, F5, F5 and Fj to show each step of your transformation.

(a) Graph with spanning forest Fy. (b) Graph with spanning forest Fj.

For the next two problems, use the Exchange Lemma iteratively to transform a set S = {wp, w1, w2}
into a set B = {vg,v1,v2}. In each step, one vector of B is injected, and one vector of S is ejected. Be
careful to ensure that the ejection does not change the set of vectors spanned.

You might find the following table useful in keeping track of the iterations.

S; A v to inject | w to eject
1i=20 {wo,wl,wg} @
i=1

1=2
i=31] {vo,vi,v2} | {wo,v1,v2} -

You are to specify the list of vectors comprising S; (after one iteration) and Ss (after two iterations) in
the process of transforming from {wg, w, wa} to {vg, v1,va}.

Problem 1: Vectors over R:

wo = [17070} Vo = [17273]
wy = [0,1,0} V1 = [1,3,3]
wy = [0,0, 1] ve = [0, 3, 3]

Problem 2: Vectors over GF(2):

wo = [0, one, 0] vy = [one, 0, one]
wy = [0,0, one] v1 = [one, 0, 0]
wo = [one, one, one] vg = [one, one, 0]

Problem 3: In this problem, you will write a procedure to achieve the following goal:
e input: a list S of vectors, and a list B of linearly independent vectors such that Span S = Span B
e output: a list T of vectors that includes B and possibly some vectors of S such that

— |T| =S|, and
— Span T' = Span S

This is not useful in its own sake, and indeed there is a trivial implementation in which T is defined to consist
of the vectors in B together with enough vectors of S to make |T'| = |S|. The point of writing this procedure
is to illustrate your understanding of the proof of the Morphing Lemma. The procedure should therefore
mimic that proof: T should be obtained step by step from S by, in each iteration, injecting a vector of B and
ejecting a vector of S — B using the Exchange Lemma. The procedure must return the list of pairs (injected
vector, ejected vector) used in morphing S into 7T

The procedure is to be called morph(S, B). The spec is as follows:

e input: a list S of distinct vectors, and a list B of linearly independent vectors such that Span S =

Span B
e output: a k-element list [(z1,w1), (22,v2),..., (2K, wy)] of pairs of vectors such that, for i =
1,2,....k
Span S = Span SU{z1,22,...,2;} — {w1,ws,...,w}
where k = |B].

This procedure uses a loop. You can use the procedure exchange(S, A, z) or the procedure
vec2rep(veclist, u), both from Homework 4, or the solver module.
Here is an illustration of how the procedure is used.

>>> § = [list2vec(v) for v in [[2,4,0],[1,0,3]1,[0,4,4]1,[1,1,111]
>>> B = [list2vec(v) for v in [[1,0,0],[0,1,0]1,[0,0,111]
>>> for (z,w) in morph(S, B):

print("injecting ", z)

print("ejecting ", w)

print ()

injecting
012

100
ejecting
012

injecting
012
010

ejecting
012

injecting
012

001
ejecting
012

Test your procedure with the above example. Your results need not exactly match the results above.

Problem 4: For each of the following matrices, (a) give a basis for the row space (b) give a basis for the
column space, and (c) verify that the row rank equals the column rank. Justify your answers.

1 2 0
1'[021}
1 4 0 0
2.0 2 2 0
(00 1 1
(1
3. | 2
| 3
(1 0
4. | 2 1
| 3 4

Problem 5: In this problem you will again write an independence-testing procedure. Write and test a
procedure my_is_independent (L) with the following spec:

e input: a list L of vectors
e output: True if the vectors form a linearly independent list.

Vectors are represented as instances of Vec. We have provided a module independence that provides a pro-
cedure rank (L) . You should use this procedure to write my_is_independent (L). No loop or comprehension
is needed. This is a very simple procedure.

Problem 6: Write and test a procedure subset_basis(T) with the following spec:
e input: a list T of vectors
e output: a list S consisting of vectors of 1" such that S is a basis for the span of T

Your procedure should be based on either a version of the Grow algorithm or a version of the Shrink algorithm.
Think about each one to see which is easier for you. You will need a loop or comprehension for this procedure.
You can use as a subroutine any one of the following:

e the procedure is_superfluous(L, b) from HWS4, or

e the procedure is_independent (L) from Problem ?? or from the module independence we provide,
or

e the procedure solve(A,b) from the solver module.

Problem 7: Write and test a procedure my_rank (L) with the following spec:
e input: a list L of Vecs
e output: The rank of L

You can use the procedure subset_basis(T) from Problem 6, in which case no loop is needed. Alternatively,
you can use the procedure is_independent (L) from the module independence we provide; in this case,
the procedure requires a loop.

Problem 8: Each of the following subproblems specifies two subspaces I/ and V of a vector space. For
each subproblem, check whether / NV = {0}.

1. Subspaces of GF(2)*: let i = Span {1010,0010} and let V = Span {0101,0001}.
2. Subspaces of R3: let & = Span {[1,2,3],[1,2,0]} and let V = Span {[2,1,3],[2,1, 3]}.
3. Subspaces of R*: let ¢/ = Span {[2,0,8,0],[1,1,4,0]} and let V = Span {[2,1,1,1],[0,1,1,1]}

Problem 9: Write and test a procedure direct_sum_decompose (U_basis, V_basis, w) with the follow-
ing spec:

e input: A list U_basis containing a basis for a vector space U, a list V_basis containing a basis for a
vector space V, and a vector w that belongs to the direct sum U ® V

e output: a pair (u,v) such that w = u + v and u belongs to U and v belongs to V.

All vectors are represented as instances of Vec. Your procedure should use the fact that a basis of U joined
with a basis of V is a basis for Y @ V. It should use the solver module or the procedure vec2rep(veclist,
u) from The Basis.

Problem 10: Write and test a procedure is_invertible (M) with the following spec:
e input: an instance M of Mat
e output: True if M is an invertible matrix, False otherwise.

Your procedure should not use any loops or comprehensions. It can use procedures from the matutil module
and from the independence module.

Problem 11: Write a procedure find matrix_inverse(A) with the following spec:
e input: an invertible matrix A over GF(2) (represented as a Mat)
e output: the inverse of A (also represented as a Mat)

Note that the input and output matrices are over GF(2).

Your procedure should use as a subroutine the solve procedure of the solver module. Since we are
using GF(2), you need not worry about rounding errors. Your procedure should be based on the following
result:

Suppose A and B are square matrices such that AB is the identity matrix. Then A and B are
inverses of each other.

In particular, your procedure should try to find a square matrix B such that AB is an identity matrix:

1

1

To do this, consider B and the identity matrix as consisting of columns.

1

Using the matrix-vector definition of matrix-matrix multiplication, you can interpret this matrix-matrix equa-
tion as a collection of n matrix-vector equations: one for by, ..., one for b,,. By solving these equations, you
can thus obtain the columns of B.

Remember: If A is an R x C matrix then AB must be an R X R matrix so the inverse B must be a
C x R matrix.

Problem 12: You will write a procedure for finding the inverse of an upper-triangular matrix.
find triangular matrix_inverse(A)

e input: an instance M of Mat representing an upper triangular matrix with nonzero diagonal elements.

You can assume that the row-label set and column-label set are of the form {0,1,2...,n —1}.
e output: a Mat representing the inverse of M

This procedure should use triangular_solve which is defined in the module triangular. It can also use
the procedures in matutil, but that's all.

