ecc lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “ecc_lab.py”. While we encourage you to complete the Ungraded
Problems, they do not require any entry into your stencil file.

1 Lab: Error-correcting codes

The purpose of computing is insight, not
numbers.
Richard Hamming

In this lab, we work with vectors and matrices over GF(2). So when you see 1’s and 0’s in this description,
remember that each 1 is really the value one from the module GF2.

1 The check matrix

As we have seen, in a linear binary code, the set C of codewords is a vector space over GF(2). In such a
code, there is a matrix H, called the check matriz, such that C is the null space of H. When the Receiver
receives the vector ¢, she can check whether the received vector is a codeword by multiplying it by H and
checking whether the resulting vector (called the error syndrome) is the zero vector.

2 The generator matrix

We have characterized the vector space C as the null space of the check matrix H. There is another way to
specify a vector space: in terms of generators. The generator matriz for a linear code is a matrix G whose
columns are generators for the set C of codewords.!

By the linear-combinations definition of matrix-vector multiplication, every matrix-vector product G * p
is a linear combination of the columns of G, and is therefore a codeword.

3 Hamming’s code

Hamming discovered a code in which a four-bit message is represented by a seven-bit codeword. The generator
matrix is

[1 0 1 1]
110 1
00 0 1
G=|1110
0010
0100
100 0|

A four-bit message is represented by a 4-vector p over GF(2). The encoding of p is the 7-vector resulting
from the matrix-vector product G * p.

1t is traditional to define the generator matrix so that its rows are generators for C. We diverge from this tradition for the
sake of simplicity of presentation.

Let fo be the encoding function, the function defined by fg(x) = G % p. The image of fg, the set of all
codewords, is the row space of G.

Task 1: Create an instance of Mat representing the generator matrix G. You can use the procedure
listlist2mat in the matutil module. Since we are working over GF(2), you should use the value one
from the GF2 module to represent 1. What is the encoding of the message [1,0, 0, 1]?

4 Decoding

Note that four of the rows of G are the standard basis vectors ey, es, €3, e4 of GF(2)*. What does that imply
about the relation between words and codewords? Can you easily decode the codeword [0,1,1,1,1,0,0]
without using a computer?

Task 2: Think about the manual decoding process you just did. Construct a 4 x 7 matrix R such that, for
any codeword ¢, the matrix-vector product R * ¢ equals the 4-vector whose encoding is c¢. What should the
matrix-matrix product RG be? Compute the matrix and check it against your prediction.

5 Error syndrome

Suppose Alice sends the codeword ¢ across the noisy channel. Let € be the vector received by Bob. To reflect
the fact that ¢ might differ from ¢, we write
c=c+e

where e is the error vector, the vector with ones in the corrupted positions.
If Bob can figure out the error vector e, he can recover the codeword ¢ and therefore the original message.
To figure out the error vector e, Bob uses the check matrix, which for the Hamming code is

0 0 01 1 1
H=]10 11 0 1 1
1010 0 1

—_ o

As a first step towards figuring out the error vector, Bob computes the error syndrome, the vector H x €,
which equals H * e.

Examine the matrix H carefully. What is special about the order of its columns?

Define the function fg by fr(y) = H *y. The image under fg of any codeword is the zero vector. Now
consider the function fp o fi that is the composition of fr with fg. For any vector p, fa(p) is a codeword
¢, and for any codeword ¢, fg(c) = 0. This implies that, for any vector p, (fg o fg)(p) = 0.

The matrix HG corresponds to the function fy o f. Based on this fact, predict the entries of the matrix
HG.

Task 3: Create an instance of Mat representing the check matrix H. Calculate the matrix-matrix product
HG. s the result consistent with your prediction?

6 Finding the error

Bob assumes that at most one bit of the codeword is corrupted, so at most one bit of e is nonzero, say the
bit in position i € {1,2,...,7}. In this case, what is the value of H xe? (Hint: this uses the special property
of the order of H’s rows.)

Task 4: Write a procedure find_error that takes an error syndrome and returns the corresponding error
vector e.

Imagine that you are Bob, and you have received the non-codeword é = [1,0,1, 1,0, 1,1]. Your goal is to
derive the original 4-bit message that Alice intended to send. To do this, use find_error to figure out the
corresponding error vector e, and then add e to ¢ to obtain the correct codeword. Finally, use the matrix R
from Task 2 to derive the original 4-vector.

Task 5: Write a one-line procedure find_error_matrix with the following spec:
e input: a matrix S whose columns are error syndromes
e output: a matrix whose c*" column is the error corresponding to the ¢ column of S.

This procedure consists of a comprehension that uses the procedure find_error together with some proce-
dures from the matutil module.
Test your procedure on a matrix whose columns are [1,1, 1] and [0, 0, 1].

7 Putting it all together

We will now encode an entire string and will try to protect it against errors. We first have to learn a little
about representing a text as a matrix of bits. Characters are represented using a variable-length encoding
scheme called UTF-8. Each character is represented by some number of bytes. You can find the value of a
character ¢ using ord(c). What are the numeric values of of the characters ‘a’, ‘A’ and space?

You can obtain the character from a numerical value using chr(i). To see the string of characters
numbered 0 through 255, you can use the following:

>>> g = ’? . join([chr(i) for i in range(256)])
>>> print(s)

We have provided a module bitutil that defines some procedures for converting between lists of GF'(2)
values, matrices over GF'(2), and strings. Two such procedures are str2bits(str) and bits2str(L):
The procedure str2bits(str) has the following spec:

e input: a string

o output: a list of GF(2) values (0 and one) representing the string
The procedure bits2str (L) is the inverse procedure:

e input: a list of GF(2) values

e output: the corresponding string

Ungraded Task: Try out str2bits(str) on the string s defined above, and verify that bits2str (L)
gets you back the original string.

The Hamming code operates on four bits at a time. A four-bit sequence is called a nibble (sometimes
nybble). To encode a list of bits (such as that produced by str2bits), we break the list into nibbles and
encode each nibble separately.

To transform each nibble, we interpret the nibble as a 4-vector and we multiply it by the generating matrix
G. One strategy is to convert the list of bits into a list of 4-vectors, and then use, say, a comprehension to

multiply each vector in that list by G. In keeping with our current interest in matrices, we will instead convert
the list of bits into a matrix B each column of which is a 4-vector representing a nibble. Thus a sequence of
4n bits is represented by a 4 X n matrix P. The module bitutil defines a procedure bits2mat (bits) that
transforms a list of bits into such a matrix, and a procedure mat2bits(A) that transforms such a matrix A
back into a list of bits.

Ungraded Task: Try converting a string to a list of bits to a matrix P and back to a string, and verify
that you get the string you started with.

Task 6: Putting these procedures together, compute the matrix P which represents the string "I'm trying
to free your mind, Neo. But | can only show you the door. You're the one that has to walk through it."

Imagine that you are transmitting the above message over a noisy communication channel. This channel
transmits bits, but occasionally sends the wrong bit, so one becomes 0 and vice versa.

The module bitutil provides a procedure noise(A, s) that, given a matrix A and a probability pa-
rameter s, returns a matrix with the same row- and column-labels as A but with entries chosen from GF'(2)
according the probability distribution {one:s, 0:1-s}. For example, each entry of noise(A, 0.02) will be
one with probability 0.02 and zero with probability 0.98

Ungraded Task: To simulate the effects of the noisy channel when transmitting your matrix P, use
noise(P, 0.02) to create a random matrix £. The matrix E + P will introduce some errors. To see the
effect of the noise, convert the perturbed matrix back to text.

Looks pretty bad, huh? Let’s try to use the Hamming code to fix that. Recall that to encode a word
represented by the row vector p, we compute G * p.

Task 7: Encode the words represented by the columns of the matrix P, obtaining a matrix C'. You should
not use any loops or comprehensions to compute C' from P. How many bits represented the text before the
encoding? How many after?

Ungraded Task: Imagine that you send the encoded data over the noisy channel. Use noise to construct
a noise matrix of the appropriate dimensions with error probability 0.02, and add it to C' to obtain a perturbed
matrix CTILDE. Without correcting the errors, decode CTILDE and convert it to text to see how garbled the
received information is.

Task 8: In this task, you are to write a one-line procedure correct (A) with the following spec:
e input: a matrix A each column of which differs from a codeword in at most one bit
e output: a matrix whose columns are the corresponding valid codewords.

The procedure should contain no loops or comprehensions. Just use matrix-matrix multiplications and
matrix-matrix additions together with a procedure you have written in this lab.

Ungraded Task: Apply your procedure correct(A) to CTILDE to get a matrix of codewords. Decode
this matrix of codewords using the matrix R from Task 2, obtaining a matrix whose columns are 4-vectors.
Then derive the string corresponding to these 4-vectors.

Did the Hamming code succeed in fixing all of the corrupted characters? If not, can you explain why?

Ungraded Task: Repeat this process with different error probabilities to see how well the Hamming code
does under different circumstances.

