
geometry lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “geometry lab.py”. While we encourage you to complete the Ungraded
Problems, they do not require any entry into your stencil file.

1 Our representation for points in the plane

You are familiar with representing a point (x, y) in the plane by a {’x’,’y’}-vector

[
x
y

]
. In this lab, for a

reason that will become apparent, we will use an {’x’,’y’,’u’}-vector

 x
y
u

. This representation is called

homogeneous coordinates. We will not be making use of homogeneous coordinates in their full generality;
here, the u coordinate will always be 1.

2 Transformations

A geometric transformation will be represented by a matrix M . To apply the transformation to the location
of a single point, use matrix-vector multiplication to multiply the matrix by the position vector representing
the point.

For example, let’s say you want to scale the point by two in the vertical direction. If we were representing

points in the plane by 2-vectors

[
x
y

]
, we would represent the transformation by the matrix

[
1 0
0 2

]
You could apply the transformation to the vector by using matrix-vector multiplication:[

1 0
0 2

] [
x
y

]
For example, if the point were located at (12, 15), you would calculate[

1 0
0 2

] [
12
15

]
=

[
12
30

]

However, since here we instead represent points in the plane by 3-vectors

 x
y
u

 (with u = 1), you would

instead represent the transformation by the matrix 1 0 0
0 2 0
0 0 1


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You would apply it to a point (x, y) by matrix-vector multiplication: 1 0 0
0 2 0
0 0 1

 x
y
1


For example, to apply it to the point (12, 15), you would calculate 1 0 0

0 2 0
0 0 1

 12
15
1

 =

 12
30
1


Note that the resulting vector also has a 1 in the u entry.

Suppose we want to apply such a transformation to many points at the same time. According to the
matrix-vector definition of matrix-matrix multiplication, to apply the transformation to many points, we
put the points together to form a position matrix and left-multiply that position matrix by the matrix
representing the transformation: 3 0 0

0 3 0
0 0 1

 2 2 −2 −2
2 −2 2 2
1 1 1 1

 =

 6 6 −6 −6
6 −6 6 6
1 1 1 1


3 Image representation

In this lab, we will be manipulating images using matrices in Python. In order to do this, we need to
represent images as matrices. We represent an image by a set of colored points in the plane.

3.1 Colored points

To represent a colored point, we need to specify its location and its color. We will therefore represent a point
using two vectors; the location vector with labels {′x′,′ y′,′ u′} and the color vector with labels {′r′,′ g′,′ b′}.
The location vector represents the location of the point in the usual way—as an (x, y) pair. The u entry is
always 1 for now; later you will see how this is used. For example, the point (12, 15) would be represented
by the vector Vec({’x’,’y’,’u’}, {’x’:12, ’y’:15, ’u’:1}.

The color vector represents the color of the point: the ′r′, ′g′, and ′b′ entries give the intensities for the
color channels red, green, and blue. For example, the color red is represented by the function {′r′ : 1}.

3.2 Our scheme for representing images

Ordinarily, an image is a regular rectangular grid of rectangular pixels, where each pixel is assigned a color.
Because we will be transforming images, we will use a slightly more general representation.

A generalized image consists of a grid of generalized pixels, where each generalized pixel is a quadrilateral
(not necessarily a rectangle).

(0,0)

(5,4)

(1,0)

The points at the corners of the generalized pixels are identified by pairs (x, y) of integers, which are called
pixel coordinates. The top-left corner has pixel coordinates (0,0), the corner directly to its right has pixel
coordinates (1,0), and so on. For example, the pixel coordinates of the four corners of the top-left generalized
pixel are (0,0), (0,1), (1,0), and (1,1).
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Each corner is assigned a location in the plane, and each generalized pixel is assigned a color. The
mapping of corners to points in the plane is given by a matrix, the location matrix. Each corner corresponds
to a column of the location matrix, and the label of that column is the pair (x, y) of pixel coordinates of the
corner. The column is a {’x’,’y’,’u’}-vector giving the location of the corner. Thus the row labels of the
location matrix are ’x’, ’y’, and ’u’.

The mapping of generalized pixels to colors is given by another matrix, the color matrix. Each generalized
pixel corresponds to a column of the color matrix, and the label of that column is the pair of pixel coordinates
of the top-left corner of that generalized pixel. The column is a {’r’,’g’,’b’}-vector giving the color of
that generalized pixel.

For example, the image consists of four generalized pixels, comprising a total of nine corners.
This image is represented by the location matrix

(0, 0) (0, 1) (0, 2) (1, 2) (1, 1) (1, 0) (2, 2) (2, 0) (2, 1)

----------------------------------------------------------------

x | 0 0 0 1 1 1 2 2 2

y | 0 1 2 2 1 0 2 0 1

u | 1 1 1 1 1 1 1 1 1

and the color matrix

(0, 0) (0, 1) (1, 1) (1, 0)

-----------------------------

b | 225 125 75 175

g | 225 125 75 175

r | 225 125 75 175

By applying a suitable transformation to the location matrix, we can obtain

(0, 0) (0, 1) (0, 2) (1, 2) (1, 1) (1, 0) (2, 2) (2, 0) (2, 1)

----------------------------------------------------------------

x | 0 2 4 14 12 10 24 20 22

y | 0 10 20 22 12 2 24 4 14

u | 1 1 1 1 1 1 1 1 1

which, combined with the unchanged color matrix, looks like this:

4 Loading and displaying images

We provide a module, image_mat_util, with some helpful procedures:

• file2mat

– input: string giving the pathname of a .png image file

– output: a 2-tuple (position matrix, color matrix) representing the image

• mat2display

– input: a position matrix and a color matrix (two arguments)

– output: Displays the image in a web browser

3



Ungraded Task: Download a .png image file, then use file2mat to load it and mat2display to display
it on the screen.

5 Linear transformations

You will be writing a module named transform that provides a number of simple linear transformations.
Instead of writing procedures that operate on images, your methods will return the transformation matrix
and you can apply it to a specific image using matrix multiplication. For each task, we want you to not just
write the procedure but also test it on some of the images provided in matrix_resources/images.

Task 1: Write a procedure identity() which takes no arguments and returns an identity matrix for position
vectors. Verify that this matrix works by applying it first to some points and then to an image, making sure
that nothing changes. (Hint: Think about the correct row and column labels.)

6 Translation

Recall that a translation is a transformation that moves a point (x, y) to (x+ α, y + β), where α and β are
parameters of the transformation. Can you come up with a 2×2 matrix that represents a translation? That
is, is there a matrix M such that x′ = Mx, where x and x′ are the coordinates of a point before and after
the translation, respectively? (Hint: How does a translation act on the origin, or the zero vector?)

Now consider a representation of points in two dimensions by 3-dimensional vectors whose third coordi-
nate is fixed to be 1. This is a special case of a representation known as homogeneous coordinates. Can you
come up with a 3× 3 matrix that describes a translation?

Task 2: Write a procedure translation(alpha, beta) that takes two translation parameters and returns
the corresponding 3× 3 translation matrix. Test it on some images.

7 Scaling

A scaling transformation transforms a point (x, y) into (αx, βy), where α and β are the x− and y-scaling

parameters, respectively. Can scaling be represented by a 2× 2 matrix multiplying a vector

[
x
y

]
? Can it

be represented by a 3× 3 matrix multiplying a vector

 x
y
1

?

Task 3: Write a procedure scale(alpha, beta) that takes x− and y−scaling parameters and returns the

corresponding 3× 3 scaling matrix that multiplies a vector

 x
y
1

.

8 Rotation

• What point does the vector (1, 0, 1) represent in homogeneous coordinates? What are the homogeneous
coordinates of this point after rotating it about the origin by 30 degrees counterclockwise?
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• Answer the same question for the vectors (0, 1, 1) and (0, 0, 1).

• What is the 3× 3 matrix M that describes a counterclockwise rotation of 30 degrees about the origin?
That is, a matrix M such that x′ = Mx, where x and x′ are the coordinates of a point before and after
the rotation, respectively.

• What is the general matrix form for a counterclockwise rotation of θ radians about the origin? Compare
this to the 2× 2 rotation matrix derived in the book.

Task 4: Write a procedure rotation(theta) that takes an angle in radians and returns the corresponding
rotation matrix. Hint: Both sin(·) and cos(·) are available in the math module.

9 Rotation about a center other than the origin

Task 5: Write a procedure rotation_about(theta, x, y) that takes three parameters—an angle theta

in radians, an x coordinate, and a y coordinate—and returns the matrix that rotates counterclockwise about
(x, y) by theta. Hint: Use procedures you’ve already written.

10 Reflection

A reflection about the y-axis transforms a point (x, y) into a point (−x, y).

Task 6: Write a procedure reflect_y() that takes no parameters and returns the matrix which corresponds
to a reflection about the y axis.

Task 7: Write a procedure reflect_x() which that takes no parameters and returns the matrix which
corresponds to a reflection about the x axis.

11 Color transformations

Our image representation supports transformations on colors as well as positions. Such a transformation
would be applied by multiplying the corresponding matrix times the color matrix.

Task 8: Write a procedure scale_color that takes r, g, and b scaling parameters and returns the corre-
sponding scaling matrix.

Task 9: Write a procedure grayscale() that returns a matrix that converts a color image to a grayscale
image. Note that both images are still represented in RGB. If a pixel in the original image had the values
r, g, b in each of the color channels, then in the grayscale image it has the value 77r

256 + 151g
256 + 28b

256 in all three
color channels.
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12 Reflection more generally

Task 10: Write a procedure reflect_about(x1,y1, x2,y2) that takes two points and returns the matrix
that reflects about the line defined by the two points. (Hint: Use rotations, translations, and a simple
reflection).
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