vec

Coding the Matrix, Summer 2013

Please fill out the stencil file named “vec.py”. While we encourage you to complete the Ungraded Problems,
they do not require any entry into your stencil file.

We have said that, mathematically speaking, a vector v is a function v : D — C, where D and C are
the domain and codomain, and C' is a field. We will implement vectors as a class Vec. Our class Vec will
have two data members (also known as fields): a set D, the domain, and a dictionary £, the possibly sparse
representation of the underlying function (i.e., items for which the value is zero need not be represented).

We have provided a skeleton Python file vec.py with procedure definitions and a class built on these
definitions. The file defines some procedures using the Python statement pass, which does nothing. The file
also defines the class Vec in such a way that expressions such as u+v and uxv and -v and alphax*v and v[d]
are legal. However, currently the operations do nothing.

Your job is to complete the definitions of the procedures, replacing each occurence of the pass statement
with appropriate code. The specification of each procedure is described in the procedure’s documentation
string. Be brief! You need only write about nine lines of code in total. Most procedures require you to
write only one line of code.

You don’t need to edit the definition of the class itself.

Assertions: For most of the procedures to be written, the first statement is an assertion. Executing an
assertion verifies that the condition is true, and raises an error if not. The assertions are there to detect
errors in the use of the procedures. For example, an assertion prevents you from trying to add two vectors
with different domains. Take a look at the assertions to make sure you understand them. Please keep the
assertions in the code.

Arbitrary set as domain: Our vector implementation allows the domain to be, for example, a set of
strings. Do not make the mistake of assuming that the domain consists of integers. If your code includes
len or range, you're doing it wrong.

Sparse representation: Your procedures should be able to cope with our sparse representation, i.e. an
element in the domain v.D that is not a key of the dictionary v.f. For example, getitem(v, k) should
return a value for every domain element even if k is not a key of v.f. However, your procedures should not
make any effort to retain sparsity when adding two vectors. That is, for two instances u and v of Vec, it is
okay if every element of u.D is represented explicitly in the dictionary of the instance u+v.

Several other procedures need to be written with the sparsity convention in mind. For example, two
vectors can be equal even if their .f fields are not equal: one vector’s .f field can contain a key-value pair
in which the value is zero, and the other vector’s .f field can omit this particular key. For this reason, the
equal (u, v) procedure needs to be written with care.

Testing: Because much of what is coming is based on the class Vec, it is very important that your im-
plementation be correct. We have provided a file test_vec.py that shows (in one big string) examples of
correct use of the Vec class and the correct Python values of expressions. Working in the Python REPL,
import your Vec class using the command

>>> from vec import Vec

and try out the examples. You can copy and paste the examples into a Python dialogue to see what your
implementation does. Please work on your implementation until its behavior matches that in the examples
(aside from order in sets and dictionaries, of course).

There is a simple way to test your vec module against all the tests in test_vec. From a console (not
running the Python REPL), type the command

python3 -m doctest test_vec.py

This will run the tests given in test_vec.py, including importing your vec module, and will print messages
about any discrepancies that arise. If your code passes the tests, nothing will be printed.
Note: Simply importing test_vec from within Python will not carry out any tests.

Using Vec: After you have completed your Vec implementation, you should get used to using it in the
proper way. In code outside vec.py, you should not call the named procedures. Instead, when operating on
Vecs you should import only the Vec class itself, and use the operators [|, +, *, -, /, and so on. Here’s a
table with the syntax for working with vectors.

operation syntax
vector addition utv
vector negation -v
vector subtraction u-v
scalar-vector multiplication alpha*v
division of a vector by a scalar | v/alpha
dot-product wkv
getting value of an entry v[d]
setting value of an entry vid]l = ..
testing vector equality u==v
pretty-printing a vector print (v)
copying a vector v.copy ()

