
factoring lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “factoring lab.py”. While we encourage you to complete the Ungraded
Problems, they do not require any entry into your stencil file.

1 First attempt to use square roots

In one step towards a modern factorization algorithm, suppose you could find integers a and b such that

a2 − b2 = N

for then
(a− b)(a + b) = N

so a − b and a + b are divisors of N . We hope that they happen to be nontrivial divisors (ie. that a − b is
neither 1 nor N).

Ungraded Task: To find integers a and b such that a2 − b2 = N , write a procedure root method(N) to
implement the following algorithm:

• Initialize integer a to be an integer greater than
√
N

• Check if
√
a2 −N is an integer.

• If so, let b =
√
a2 −N . Success! Return a− b.

• If not, repeat with the next greater value of a.

The module factoring support provides a procedure intsqrt(x) with the following spec:

• input: an integer x

• output: an integer y such that y ∗ y is close to x and, if x happens to be a perfect square, y ∗ y is
exactly x.

You should use intsqrt(x) in your implementation of the above algorithm. Try it out with 55, 77, 146771,
and 118. Hint: the procedure might find just a trivial divisor or it might run forever.

2 Euclid’s algorithm for greatest common divisor

In order to do better, we turn for help to a lovely algorithm that dates back some 2300 years: Euclid’s
algorithm for greatest common divisor. Here is code for it:

def gcd(x,y): return x if y == 0 else gcd(y, x % y)

1

Ungraded Task: Enter the code for gcd or import it from the module factoring support that we pro-
vide. Try it out. Specifically, use Python’s pseudo-random-number generator (use the procedure randint(a,b)
in the module random) or use pseudo-random whacking at your keyboard to generate some very big integers
r, s, t. Then set a = r ∗ s and b = s ∗ t, and find the greatest common divisor d of a and b. Verify that d
has the following properties:

• a is divisible by d (verify by checking that a%d equals zero)

• b is divisible by d, and

• d ≥ s

3 Using square roots revisited

It’s too hard to find integers a and b such that a2− b2 equals N . We will lower our standards a bit, and seek
integers a and b such that a2 − b2 is divisible by N . Suppose we find such integers. Then there is another
integer k such that

a2 − b2 = kN

That means
(a− b)(a + b) = kN

Every prime in the bag of primes whose product is kN

• belongs either to the the bag of primes whose product is k or the bag of primes whose product is N ,
and

• belongs either to the the bag of primes whose product is a− b or the bag of primes whose product is
a + b.

Suppose N is the product of two primes, p and q. If we are even a little lucky, one of these primes will belong
to the bag for a − b and the other will belong to the bag for a + b. If this happens, the greatest common
divisor of a− b with N will be nontrivial! And, thanks to Euclid’s algorithm, we can actually compute it.

Ungraded Task: Let N = 367160330145890434494322103, let a = 67469780066325164, and let b =
9429601150488992, and verify that a ∗ a − b ∗ b is divisible by N . That means that the greatest common
divisor of a − b and N has a chance of being a nontrivial divisor of N . Test this using the gcd procedure,
and report the nontrivial divisor you found.

But how can we find such a pair of integers? Instead of hoping to get lucky, we’ll take matters into our
own hands. We’ll try to create a and b. This method starts by creating a set primeset consisting of the
first thousand or so primes. We say an integer x factors over primeset if you can multiply together some of
the primes in S (possibly using a prime more than once) to form x.

For example:

• 75 factors over {2, 3, 5, 7} because 75 = 3 · 5 · 5.

• 30 factors over {2, 3, 5, 7} because 30 = 2 · 3 · 5.

• 1176 factors over {2, 3, 5, 7} because 1176 = 2 · 2 · 2 · 7 · 7.

We can represent a factorization of an integer over a set of primes by a list of pairs (prime, exponent).
For example:

2

• We can represent the factorization of 75 over {2, 3, 5, 7} by the list of pairs [(3, 1), (5, 2)], indicating
that 75 is obtained by multiplying a single 3 and two 5’s.

• We can represent the factorization of 30 by the list [(2, 1), (3, 1), (5, 1)], indicating that 30 is obtaine
dby multiplying 2, 3, and 5.

• We can represent the factorization of 1176 by the list [(2, 3), (5, 2)], indicating that 1176 is obtained by
multipying together three 2’s and two 5’s.

The first number in each pair is a prime in the set primeset and the second number is its exponent:

75 = 3152

30 = 213151

1176 = 2352

The module factoring support defines a procedure dumb factor(x, primeset) with the following spec:

• input: an integer x and a set primeset of primes

• output: if there are primes p1, . . . ,ps in primeset and positive integers e1, e2, . . . , es (the exponents)
such that x = pe11 pe22 · · · pess then the procedure returns the list [(p1, e1), (p2, e2), . . . , (ps, es)] of pairs
(prime, exponent). If not, the procedure returns the empty list.

Here are some examples:

>>> dumb_factor(75, {2,3,5,7})

[(3, 1), (5, 2)]

>>> dumb_factor(30, {2,3,5,7})

[(2, 1), (3, 1), (5, 1)]

>>> dumb_factor(1176, {2,3,5,7})

[(2, 3), (3, 1), (7, 2)]

>>> dumb_factor(2*17, {2,3,5,7})

[]

>>> dumb_factor(2*3*5*19, {2,3,5,7})

[]

Ungraded Task: Define primeset={2, 3, 5, 7, 11, 13}. Try out dumb factor(x, primeset) on integers
x = 12, x = 154, x = 2 ∗ 3 ∗ 3 ∗ 3 ∗ 11 ∗ 11 ∗ 13, x = 2 ∗ 17, x = 2 ∗ 3 ∗ 5 ∗ 7 ∗ 19. Report the results.

Task 1: From the GF2 module, import the value one. Write a procedure int2GF2(i) that, given an integer
i, returns one if i is odd and 0 if i is even.

>>> int2GF2(3)

one

>>> int2GF2(4)

0

The module factoring support defines a procedure primes(P) that returns a set consisting of the prime
numbers less than P .

3

Task 2: From the module vec, import Vec. Write a procedure make Vec(primeset, factors) with the
following spec:

• input: a set of primes primeset and a list factors=[(p1, a1), (p2, a2), . . . , (ps, as)] such as produced by
dumb factor, where every pi belongs to primeset

• output: a primeset-vector v over GF (2) with domain primeset such that v[pi] = int2GF2(ai) for
i = 1, . . . , s

For example,

>>> make_Vec({2,3,5,7,11}, [(3,1)])

Vec({3, 2, 11, 5, 7},{3: one})

>>> make_Vec({2,3,5,7,11}, [(2,17), (3, 0), (5,1), (11,3)])

Vec({3, 2, 11, 5, 7},{11: one, 2: one, 3: 0, 5: one})

Now comes the interesting part.

Task 3: Suppose you want to factor the integer N = 2419 (easy but big enough to demonstrate the idea).
Write a procedure find candidates(N, primeset) that, given an integer N to factor and a set prime-

set of primes, finds len(primeset)+1 integers a for which a·a−N can be factored completely over primeset
The procedure returns two lists:

• the list roots consisting of a0, a1, a2, ... such that ai ·ai−N can be factored completely over primeset,
and

• the list rowlist such that element i is the primeset-vector over GF (2) corresponding to ai (that is,
the vector produced by make vec).

The algorithm should initialize

roots = []

rowlist = []

and then iterate for x = intsqrt(N)+2, intsqrt(N)+3, . . ., and for each value of x,

• if x · x−N can be factored completely over primeset,

– append x to roots,

– append to rowlist the vector corresponding to the factors of x · x−N

continuing until at least len(primeset)+1 roots and vectors have been accumulated.
Try out your procedure on N = 2419 by calling find candidates(N, primeset(32)).

4

Here’s a summary of the result of this computation:

x x2-N factored result of dumb factor vector.f
51 182 2 · 7 · 13 [(2, 1), (7, 1), (13, 1)] {2 : one, 13 : one, 7 : one}
52 285 3 · 5 · 19 [(3, 1), (5, 1), (19, 1)] {19 : one, 3 : one, 5 : one}
53 390 2 · 3 · 5 · 13 [(2, 1), (3, 1), (5, 1), (13, 1)] {2 : one, 3 : one, 5 : one, 13 : one}
58 945 33 · 5 · 7 [(3, 3), (5, 1), (7, 1)] {3 : one, 5 : one, 7 : one}
61 1302 2 · 3 · ·7 · 13 [(2, 1), (3, 1), (7, 1), (31, 1)] {31 : one, 2 : one, 3 : one, 7 : one}
62 1425 3 · 52 · 19 [(3, 1), (5, 2), (19, 1)] {19 : one, 3 : one, 5 : 0}
63 1550 2 · 52 · 31 [(2, 1), (5, 2), (31, 1)] {2 : one, 5 : 0, 31 : one}
67 2070 2 · 32 · 5 · 23 [[(2, 1), (3, 2), (5, 1), (23, 1)] {2 : one, 3 : 0, 5 : one, 23 : one}
68 2205 32 · 5 · 72 [(3, 2), (5, 1), (7, 2)] {3 : 0, 5 : one, 7 : 0}
71 2622 2 · 3 · 19 · 23 [(2, 1), (3, 1), (19, 1), (23, 1)] {19 : one, 2 : one, 3 : one, 23 : one}
77 3510 2 · 33 · 5 · 13 [(2, 1), (3, 3), (5, 1), (13, 1)] {2 : one, 3 : one, 5 : one, 13 : one}
79 3822 2 · 3 · 72 [(2, 1), (3, 1), (7, 1)] {2 : one, 3 : one, 13 : one, 7 : 0}

Thus, after the loop completes, the value of roots should be the list

[51, 52, 53, 58, 61, 62, 63, 67, 68, 71, 77, 79]

and the value of rowlist should be the list

[Vec({2,3,5, ..., 31},{2: one, 13: one, 7: one}),
...,

Vec({2,3,5, ... , 31},{2: one, 3: one, 5: one, 13: one}),
Vec({2,3,5, ..., 31}, {2: one, 3: one, 13: one, 7: 0})]

Now we use the results to find a nontrivial divisor of N .
Examine the table rows corresponding to 53 and 77. The factorization of 53 ∗ 53−N is 2 · 3 · 5 · 13. The

factorization of 77∗77−N is 2 ·33 ·5 ·13. Therefore the factorization of the product (53∗53−N)(77∗77−N)
is

(2 · 3 · 5 · 13)(2 · 33 · 5 · 13) = 22 · 34 · 52 · 132

Since the exponents are all even, the product is a perfect square: it is the square of

2 · 32 · 5 · 13

Thus we have derived

(532 −N)(772 −N) = (2 · 32 · 5 · 13)2

532 · 772 − kN = (2 · 32 · 5 · 13)2

(53 · 77)2 − kN = (2 · 32 · 5 · 13)2

Ungraded Task: To try to find a factor, let a = 53·77 and let b = 2·32 ·5·13, and compute gcd(a−b,N).
Did you find a proper divisor of N?

Similarly, examine the table rows corresponding to 52, 67, and 71. The factorizations of x ∗ x − N for
these values of x are

3 · 5 · 19
2 · 32 · 5 · 23
2 · 3 · 19 · 23

5

Therefore the factorization of the product (52 ∗ 52−N)(67 ∗ 67−N)(71 ∗ 71−N) is

(3 · 5 · 19)(2 · 32 · 5 · 23)(2 · 3 · 19 · 23) = 22 · 34 · 52 · 192 · 232

which is again a perfect square; it is the square of

2 · 32 · 5 · 19 · 23

Ungraded Task: To again try to find a factor of N (just for practice), let a = 52 · 67 · 71 and let
b = 2 · 32 · 5 · 19 · 23, and compute gcd(a, b). Did you find a proper divisor of N?

How did I notice that the rows corresponding to 52, 67, and 71 combine to provide a perfect square?
That’s where the linear algebra comes in. The sum of the vectors in these rows is the zero vector. Let
A be the matrix consisting of these rows. Finding a nonempty set of rows of A whose GF (2) sum is the
zero vector is equivalent, by the linear-combinations definition of vector-matrix multiplication, to finding a
nonzero vector v such that v ∗A is the zero vector. That is, v is a nonzero vector in the null space of AT .

How do I know such a vector exists? Each vector in rowlist is a primeset-vector and so lies in a
K-dimensional space where K = len(primelist). Therefore the rank of these vectors is at most K. But
rowlist consists of at least K + 1 vectors. Therefore the rows are linearly dependent.

How do I find such a vector? When I use Gaussian elimination to transform the matrix into echelon
form, the last one is guaranteed to be zero.

More specifically, I find a matrix M representing a transformation that reduced the vectors in rowlist

to echelon form. The last row of M , multiplied by the original matrix represented by rowlist, yields the
last row of the matrix in echelon form, which is a zero vector.

To compute M , you can use the procedure transformation rows(rowlist input) defined in the module
echelon we provide. Given a matrix A (represented by as a list rowlist input of rows), this procedure
returns a matrix M (also represented as a list of rows) such that MA is in echelon form.

Since the last row of MA must be a zero vector, by the vector-matrix definition of matrix-vector multipli-
cation, the last row of M times A is the zero vector. By the linear-combinations definition of vector-matrix
multiplication, the zero vector is a linear combination of the rows of A where the coefficients are given by
the entries of the last row of M . The last row of M is

Vec({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},{0: 0, 1: one, 2: one, 4: 0, 5: one, 11: one})

Note that entries 1, 2, 5, and 11 are nonzero, which tells us that the sum of the corresponding rows of
rowlist is the zero vector. That tells us that these rows correspond to the factorizations of numbers whose
product is a perfect square. The numbers are: 285, 390, 1425, and 3822. Their product is 605361802500,
which is indeed a perfect square: it is the square of 778050. We therefore set b = 778050. We set a to be the
product of the corresponding values of x (52, 53, 62, and 79), which is 1395 498888. The greatest common
divisor of a− b and N is, uh, 1. Oops, we were unlucky–it didn’t work.

Was all that work for nothing? It turns out we were not so unlucky. The rank of the matrix A could
have been len(rowlist) but turned out to be somewhat less. Consequently, the second-to-last row of MA is
also a zero vector. The second-to-last vector of M is

Vec({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},{0: 0, 1: 0, 10: one, 2: one})

Note that entries 10 and 2 are nonzero, which tells us that combining row 2 of rowlist (the row cor-
rresponding to 53) with row 10 of rowlist (the row corresponding to 77) will result in a perfect square.

6

Task 4: Define a procedure find a and b(v, roots, N) that, given a vector v (one of the rows of M ,
the list roots, and the integer N to factor, computes a pair (a, b) of integers such that a2− b2 is a multiple
of N .

Your procedure should work as follows:

• Let alist be the list of elements of roots corresponding to nonzero entries of the vector v. (Use a
comprehension.)

• Let a be the product of these. (Use the procedure prod(alist) defined in the module factoring.)

• Similarly, let c be the product of {x · x−N : x ∈ alist}.

• Let b be intsqrt(c).

• Verify using an assertion that b*b == c

• Return the pair (a, b).

Try out your procedure with v being the last row of M . See if a−b and N have a nontrivial common divisor.
If it doesn’t work, try it with v being the second-to-last row of M , etc.

Finally, you will try the above strategy on larger integers.

Task 5: Let N = 2461799993978700679, and try to factor N

• Let primelist be the set of primes up to 10000.

• Use find candidates(N, primelist) to compute the lists roots and rowlist.

• Use echelon.transformation rows(rowlist) to get a matrix M .

• Let v be the last row of M , and find a and b using find a and b(v, roots, N).

• See if a − b has a nontrivial common divisor with N . If not, repeat with v being the second-to-last
row of M or the third-to-last row....

What is the smallest nontrivial divisor of N?

Ungraded Task: Let N = 20672783502493917028427, and try to factor N . This time, since N is a lot
bigger, finding K + 1 rows will take a lot longer, perhaps six to ten minutes depending on your computer.
Finding M could take a few minutes.

Ungraded Task: Here is a way to speed up finding M : The procedure
echelon.transformation rows takes an optional third argument, a list of column-labels. The list instructs
the procedure in which order to handle column-labels. The procedure works much faster if the list consists
of the primes of primeset in descending order:

>>> M_rows = echelon.transformation_rows(rowlist,

sorted(primeset, reverse=True))

Why should the order make a difference? Why does this order work well? Hint: a large prime is less likely
than a small prime to belong to the factorization of an integer.

7

