
hw6

Coding the Matrix, Summer 2013

Please fill out the stencil file named “hw6.py”. While we encourage you to complete the Ungraded Problems,
they do not require any entry into your stencil file.

Practice on Gaussian Elimination

Ungraded Problem: Carry out Gaussian elimination by hand for the following matrix over GF (2).
Handle the columns in the order A,B,C,D. For each of the column-labels, determine

• which row you select as the pivot row,

• which rows the pivot row is added to (if any), and

• what the resulting matrix is.

Finally, reorder the rows of the resulting matrix to obtain a matrix in echelon form.
Note: Remember that each row is only used once as a pivot-row, and that the pivot-row for column c

must have a nonzero value for that column. Remember that the matrix is over GF (2).

A B C D
0 one one 0 0
1 one 0 one 0
2 0 one one one
3 one 0 0 0

Recognizing Echelon Form

Problem 1: Each of the matrices given below is almost in echelon form; give the matrix resulting from
replacing the MINIMUM number of elements with zeroes to obtain a matrix in echelon form. You are not
allowed to reorder the rows or columns of the matrix. (Note: you don’t need to actually do any steps of
Gaussian elimination for this problem.)

Example: Given the matrix 
1 2 3 4
9 2 3 4
0 0 3 4
0 8 0 4


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you would replace the 9 and 8 with zeroes, so you answer would be the matrix
1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4


Okay, here are the problems:

1.


1 2 0 2 0
0 1 0 3 4
0 0 2 3 4
1 0 0 2 0
0 3 0 0 4



2.


0 4 3 4 4
6 5 4 2 0
0 0 0 0 1
0 0 0 0 2



3.

 1 0 0 1
1 0 0 1
0 0 0 1



4.


1 0 0 0
0 1 0 0
1 1 0 0
0 0 0 1



Problem 2: Write a procedure is echelon(A) that takes a matrix in list of row lists and returns True if
it is echelon form, and False otherwise.

Try out your procedure on the following matrices:

 2 1 0
0 −4 0
0 0 1

 (True),

 2 1 0
−4 0 0
0 0 1

 (False),

 2 1 0
0 3 0
1 0 1

 (False),

 1 1 1 1 1
0 2 0 1 3
0 0 0 5 3

 (True)

Solving Echelon-Matrix-Vector Equations

Consider solving the matrix-vector equation

a b c d e
0 1 1
1 2 3
2 1 9

∗ [xa, xb, xc, xd, xe] = [1, 1, 1]

where the matrix is in echelon form. The algorithm for solving this is very similar to the algorithm for solving
a triangular system. The difference is that the algorithm disregards some of the columns. In particular, any
column not containing the leftmost nonzero entry of some row is disregarded.
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For the above example, the algorithm should disregard columns c and e. Column a contains the leftmost
nonzero in row 0, column b contains the leftmost nonzero in row 1, and column d contains the leftmost
nonzero in row 2.

Problem 3: For each of the following matrix-vector equations, find the solution:

(a)

[
10 2 −3 53
0 0 1 2013

]
∗ [x1, x2, x3, x4] = [1, 3]

(b)

 2 0 1 3
0 0 5 3
0 0 0 1

 ∗ [x1, x2, x3, x4] = [1,−1, 3]

(c)

 2 2 4 3 2
0 0 −1 11 1
0 0 0 0 5

 ∗ [x1, x2, x3, x4, x5] = [2, 0, 10]

The examples above have no rows that are zero. What do we do when the matrix has some rows that
are zero? Ignore them!

Consider an equation ai · x = bi where ai = 0.

• If bi = 0 then the equation is true regardless of the choice of x.

• If bi 6= 0 then the equation is false regardless of the choice of x.

Thus the only disadvantage of ignoring the rows that are zero is that the algorithm will not notice that the
equations cannot be solved.

Problem 4: For each of the following matrix-vector equations, say whether the equation has a solution. If
so, compute the solution.

(a)

 1 3 −2 1 0
0 0 2 −3 0
0 0 0 0 0

 ∗ [x1, x2, x3, x4, x5] = [5, 3, 2]

(b)


1 2 −8 −4 0
0 0 2 12 0
0 0 0 0 0
0 0 0 0 0

 ∗ [x1, x2, x3, x4, x5] = [5, 4, 0, 0]

Problem 5: Give a procedure echelon solve(rowlist, label list, b) with the following spec:

• input: for some integer n, a matrix in echelon form represented by a list rowlist of n vectors, a list
of column-labels giving the order of the columns of the matrix (i.e. the domain of the vectors), and a
length-n list b of field elements

• output: a vector x such that, for i = 0, 1, . . . , n− 1, the dot-product of rowlist[i] with x equals b[i]
if rowlist[i] is not a zero vector

Obviously your code should not use the solver module.
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If you wanted to use this procedure with floating-point numbers, the procedure would have to interpret
very small numbers as zero. To avoid this issue, you should assume that the field is GF (2). (The interested
student can modify the solution to work for R.)

Hints for your implementation:

• The slickest way to write this procedure is to adapt the code of the procedure
triangular solve(rowlist, label list, b) in module triangular. As in that procedure, ini-
tialize a vector x to zero, then iterate through the rows of rowlist from last row to first row; in
each iteration, assign to an entry of x. In this procedure, however, you must assign to the variable
corresponding to the column containing the first nonzero entry in that row. (If there are no nonzero
entries in that row, the iteration should do nothing.)

This approach leads to a very simple implementation consisting of about seven lines. The code closely
resembles that for triangular solve.

• For those for whom the above approach does not make sense, here is an alternative approach that
leads to about twice as many lines of code. Form a new matrix-vector equation by removing

– zero rows and

– irrelevant columns,

and then use the procedure triangular solve in module triangular to solve the new matrix-vector
equation.

Removing zero rows: When you remove zero rows from the matrix, you must remove the corresponding
entries from the right-hand side vector b. Because the matrix is in echelon form, all the zero rows
come at the end. Find out which rows are zero, and form a new rowlist from the old that omits those
rows; form a new right-hand side vector b by removing the corresponding entries.

Removing irrelevant columns: For each of the remaining rows, find out the position of the leftmost
nonzero entry. Then remove the columns that do not contain any leftmost nonzero entries.

Let A = b be the original matrix-vector equation, and let Â̂ = b̂ be the one resulting from these
operations. Finally, solve Â̂ = b̂ using triangular solve, and let û be the solution. The domain of
û equals the column-label set of Â rather than that of A. From û, construct a solution u to A = b.
The domain of u is the column-label set of A, and the extra entries of u (the ones not given by û)
are set to zero (easy because of our sparsity convention).

Here are some examples to test your procedure.

•

’A’ ’B’ ’C’ ’D’ ’E’
one 0 one one 0

0 one 0 0 one
0 0 one 0 one
0 0 0 0 one

and b = [one, 0, one, one].

The solution is
’A’ ’B’ ’C’ ’D’ ’E’
one one 0 0 one

•

’A’ ’B’ ’C’ ’D’ ’E’
one one 0 one 0

0 one 0 one one
0 0 one 0 one
0 0 0 0 0

and b = [one, 0, one, 0].

The solution is
’A’ ’B’ ’C’ ’D’ ’E’
one 0 one 0 0

4



Problem 6: Now that you have developed a procedure for solving a matrix-vector equation where the
matrix is in echelon form, you can use this in a procedure for the general case. We have already described
the method. The code for the method is

def solve(A, b):

M = echelon.transformation(A)

U = M*A

col_label_list = sorted(A.D[1])

U_rows_dict = mat2rowdict(U)

rowlist = [U_rows_dict[i] for i in U_rows_dict]

return echelon_solve(rowlist,col_label_list, M*b)

(Sorting is problematic when the column-labels include values of different types, e.g. ints and strings.)
Suppose you have the matrix

A =

A B C D
a one one 0 one
b one 0 0 one
c one one one one
d 0 0 one one

and the right-hand side vector g=
a b c d

one 0 one 0
You are interested in finding the solution to the matrix-vector equation A = g. The first step in using

Gaussian elimination to find the solution is to find a matrix M such that MA is in echelon form.

In this case, M =

a b c d
0 one 0 0 0
1 one one 0 0
2 one 0 one 0
3 one 0 one one

and MA =

A B C D
0 one one 0 one
1 0 one 0 0
2 0 0 one 0
3 0 0 0 one

Use the above data and above procedure to figure out not the solution but what actual arguments should
be provided to echelon solve in order to obtain the solution to the original matrix-vector equation.

Finding a Basis for the Nullspace

Problem 7: We consider matrices over GF (2). Let

A =

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one 0 0 0 one
e one 0 0 0 0

.

5



Then the matrix

M =

a b c d e
0 0 0 one 0 0
1 one 0 0 0 0
2 one one 0 0 0
3 0 one one one 0
4 one 0 one 0 one

has the property that MA is a matrix in echelon form, namely

MA =

A B C D E
0 one 0 0 one 0
1 0 0 0 one 0
2 0 0 0 0 one
3 0 0 0 0 0
4 0 0 0 0 0

List the rows u of M such that u∗A = 0. (Note that these are vectors in the null space of the transpose
AT .)

Problem 8: We consider matrices over GF (2). Let

A =

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one one one 0 one
e one 0 0 one 0

Then the matrix

M =

a b c d e
0 0 0 one 0 0
1 0 0 one one 0
2 one 0 0 0 0
3 one one 0 0 0
4 0 0 one 0 one

has the property that MA is a matrix in echelon form, namely

MA =

A B C D E
0 one 0 0 one 0
1 0 one one one one
2 0 0 0 one 0
3 0 0 0 0 one
4 0 0 0 0 0

List the rows u of M such that u∗A = 0. (Note that these are vectors in the null space of the transpose
AT .)
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Closest Vector

Problem 9: For each of the following a, b, find the vector in Span {a} that is closest to b:

1. a = [1, 2], b = [2, 3]

2. a = [0, 1, 0], b = [1.414, 1, 1.732]

3. a = [−3,−2,−1, 4], b = [7, 2, 5, 0]

Projection Orthogonal to a and along a

Problem 10: For each of the following a, b, find b⊥a and b||a.

1. a = [3, 0], b = [2, 1]

2. a = [1, 2,−1], b = [1, 1, 4]

3. a = [3, 3, 12], b = [1, 1, 4]

Computing the Norm

Problem 11: For each of the following, compute the norm of given vector v:

(a) v = [2, 2, 1]

(b) v = [
√

2,
√

3,
√

5,
√

6]

(c) v = [cos2(θ)− sin2(θ), 2 sin(θ)cos(θ)] (Hint: use the identity sin2(θ) + cos2(θ) = 1 for all θ)
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