
hw7

Coding the Matrix, Summer 2013

Please fill out the stencil file named “hw7.py”. While we encourage you to complete the Ungraded Problems,
they do not require any entry into your stencil file.

Problem 1: Write a procedure basis(vlist) with the following spec:

• input: a list vlist of Vecs

• output: a list of linearly independent Vecs that span the same space as vlist

The Vecs returned should be elements of orthogonalize(vlist).

Your procedure should use the procedure orthogonalize defined in the provided module
orthogonalization but should call no other procedures. Ideally, it should be a one-line procedure.

When given the Vecs corresponding to

[2, 4, 3, 5, 0], [4,−2,−5, 4, 0], [−8, 14, 21,−2, 0],

[−1,−4,−4, 0, 0], [−2,−18,−19,−6, 0], [5,−3, 1,−5, 2]

the procedure might return Vecs that approximately correspond to

[2, 4, 3, 5, 0], [3.81,−2.37,−5.28, 3.54, 0],

[−1.58,−0.73, 0.0009, 1.21, 0], [0.35,−3.16, 1.01,−0.99, 2]

Note: In this problem and the next, to test whether a vector v should be considered a zero vector, you can
see if the square of its norm is very small, e.g. less than 10−20.

Problem 2: Write a procedure subset basis(vlist) with the following spec:

• input: a list vlist of vectors

• output: a list of linearly independent vectors that span the same space as vlist and that are in vlist

Your procedure should use orthogonalize(vlist) and no other procedure. Ideally, it should be a one-line
procedure.

When given the Vecs corresponding to

[2, 4, 3, 5, 0], [4,−2,−5, 4, 0], [−8, 14, 21,−2, 0],

[−1,−4,−4, 0, 0], [−2,−18,−19,−6, 0], [5,−3, 1,−5, 2]

the procedure should return the Vecs corresponding to

[2, 4, 3, 5, 0], [4,−2,−5, 4, 0], [−1,−4,−4, 0, 0], [5,−3, 1,−5, 2]
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Projections and representations in different bases

These problems seem to involve giving elaborate algorithms but usually the solution will involve just simple
operations: matrix-vector, vector-matrix, and matrix-matrix multiplication; dot-product, maybe transpose.
When you need a little more, I will indicate.

Don’t start coding until you figure out how to solve the problem. You will find that in each problem the
body of the procedure is very short. If the body of your procedure is at all complicated (e.g. involves a loop
or even a comprehension), you’re doing it wrong!

Just for fun, try making very short solutions. In my solutions the average length of the body of the
procedure (not counting def ... return .... is about five characters! :) I will admit, however, that one
of my solutions involves cheating a little: I use an expression that would not be mathematically acceptable
if the vectors were translated into row and column vectors.

Use your understanding of linear algebra to give solutions that are as simple and pure as possible.

Problem 3: Write a procedure orthogonal vec2rep(Q, b) for the following:

• input: An orthogonal matrix Q, and a vector b whose label set equals the column-label set of Q

• output: the coordinate representation of b in terms of the rows of Q.

Your code should use the mat module and no other module and no other procedures.

Test case: For Q =


1√
2

1√
2

0
1√
3
− 1√

3
1√
3

− 1√
6

1√
6

2√
6

, b =
[

10 20 30
]
,

you should get
[

21.213 11.547 28.577
]
.

Problem 4: Write a procedure orthogonal change of basis(A, B, a) for the following:

• input:

– two orthogonal matrices A and B, such that the row-label set of A equals its column-label set
which equals the row and column-label sets of B as well.

– the coordinate representation a of a vector v in terms of the rows of A.

• output: the coordinate representation of v in terms of the columns of B.

Just for fun, try to limit your procedure’s body to about five characters (not counting return).

Test case: For A = B =


1√
2

1√
2

0
1√
3
− 1√

3
1√
3

− 1√
6

1√
6

2√
6

, a = [
√

2, 1√
3
, 2√

6
], you should get [0.876, 0.538, 1.393].

Problem 5: Write a procedure orthonormal projection orthogonal(W, b) for the following spec.

• input: a matrix W whose rows are orthonormal, and a vector b whose label set is the column-label set
of W

• output: the projection of b orthogonal to the row space of W .

Just for fun, try to limit your procedure’s body to about seven characters (not counting return ). This is
cheating, in that the expression would not be considered good mathematical syntax; without cheating, you
can do it in nineteen characters.
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(Hint: First find the projection of b onto the row space of W .) Test case: For W =[
1√
2

1√
2

0
1√
3
− 1√

3
1√
3

]
, b = [10, 20, 30], you should get

[
−11 2

3 11 2
3 23 1

3

]
.

Ungraded Problem: Let v1 = [1, 1] and let v2 = [2, 1]. Let vlist = [v1,v2].

(a) Show how orthogonalize(vlist) computes [v∗1 ,v
∗
2 ].

(b) Show the result of normalizing the vectors of [v∗1 ,v
∗
2 ].

Problem 6: Write a module orthonormalization that defines a procedure
orthonormalize(L) with the following spec:

• input: a list L of linearly independent Vecs

• output: a list L∗ of orthonormal Vecs such that, for i = 1, . . . , len(L), the first i Vecs of L∗ and the
first i Vecs of L span the same space.

Your procedure should follow this outline:

1. Call orthogonalize(L),

2. Compute the list of norms of the resulting vectors, and

3. Return the list resulting from normalizing each of the vectors resulting from Step 1.

Be sure to test your procedure.
When the input consists of the list of Vecs corresponding to [4, 3, 1, 2], [8, 9,−5,−5],

[10, 1,−1, 5], your procedure should return the list of vecs corresponding approximately to
[0.73, 0.55, 0.18, 0.37], [0.19, 0.40,−0.57,−0.69], [0.53,−0.65,−0.51, 0.18].

Problem 7: Write a procedure aug orthonormalize(L) in your orthonormalization module with the
following spec:

• input: a list L of Vecs

• output: a pair Qlist, Rlist of lists of Vecs such that

– coldict2mat(L) equals coldict2mat(Qlist) times coldict2mat(Rlist), and

– Qlist = orthonormalize(L)

Your procedure should start by calling the procedure aug orthogonalize(L) defined in the
module orthogonalization. I suggest that your procedure also use a subroutine adjust(v,

multipliers) with the following spec:

• input: a Vec v with domain {0, 1, 2, . . . , n− 1} and an n-element list multipliers of scalars

• output: a Vec w with the same domain as v such that w[i] = multipliers[i]*v[i]

Here is an example for testing aug orthonormalize(L):
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>>> L = [list2vec(v) for v in [[4,3,1,2],[8,9,-5,-5],[10,1,-1,5]]]

>>> print(coldict2mat(L))

0 1 2

---------

0 | 4 8 10

1 | 3 9 1

2 | 1 -5 -1

3 | 2 -5 5

>>> Qlist, Rlist = aug_orthonormalize(L)

>>> print(coldict2mat(Qlist))

0 1 2

---------------------

0 | 0.73 0.187 0.528

1 | 0.548 0.403 -0.653

2 | 0.183 -0.566 -0.512

3 | 0.365 -0.695 0.181

>>> print(coldict2mat(Rlist))

0 1 2

------------------

0 | 5.48 8.03 9.49

1 | 0 11.4 -0.636

2 | 0 0 6.04

>>> print(coldict2mat(Qlist)*coldict2mat(Rlist))

0 1 2

---------

0 | 4 8 10

1 | 3 9 1

2 | 1 -5 -1

3 | 2 -5 5

Keep in mind, however, that numerical calculations are approximate:

>>> print(coldict2mat(Qlist)*coldict2mat(Rlist)-coldict2mat(L))

0 1 2

----------------------

0 | -4.44E-16 0 0

1 | 0 0 4.44E-16

2 | -1.11E-16 0 0

3 | -2.22E-16 0 0

Problem 8: In each of the following parts, you are given a matrix A and a vector b. You are also given
the approximate QR factorization of A. You are to
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• find a vector x̂ that minimizes ||Ax̂− b||2,

• prove to yourself that the columns of A are (approximately) orthogonal to the residual b − Ax̂ by
computing the inner products, and

• calculate the value of ‖Ax̂− b‖.

1. A =

 8 1
6 2
0 6

 and b = [10, 8, 6]

A =

 0.8 −0.099
0.6 0.132
0 0.986


︸ ︷︷ ︸

Q

[
10 2
0 6.08

]
︸ ︷︷ ︸

R

2. A =

 3 1
4 1
5 1

 and b = [10, 13, 15]

A =

 0.424 .808
0.566 0.115
0.707 −0.577


︸ ︷︷ ︸

Q

[
7.07 1.7

0 0.346

]
︸ ︷︷ ︸

R

Problem 9: Write and test a procedure QR solve(A, b). Assuming the columns of A are linearly inde-
pendent, this procedure should return the vector x̂ that minimizes ‖b−Ax̂‖.

The procedure should use

• triangular solve(rowlist, label list, b) defined in the module triangular, and

• the procedure factor(A) defined in the module QR, which in turn uses the procedure
aug orthonormalize(L) that you wrote in Problem 6

Note that triangular solve requires its matrix to be represented as a list of rows. The row-labels of
the matrix R returned by QR.factor(R) are 0,1,2,... so it suffices to use the dictionary returned by
mat2rowdict(R).

Note also that triangular solve must be supplied with a list label list of column-labels in order
that it know how to interpret the vectors in rowlist as forming a triangular system. The column-labels of
R are, of course, the column-labels of A. The ordering to provide here must match the ordering used in
QR.factor(A), which is sorted(A.D[1], key=repr).

You can try your procedure on the examples given in Problem 8 and on the following example:

>>> A=Mat(({’a’,’b’,’c’},{’A’,’B’}), {(’a’,’A’):-1, (’a’,’B’):2,

(’b’,’A’):5, (’b’,’B’):3,(’c’,’A’):1, (’c’,’B’):-2})

>>> print(A)

A B

-------

a | -1 2

b | 5 3
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c | 1 -2

>>> Q, R = QR.factor(A)

>>> print(Q)

0 1

--------------

a | -0.192 0.68

b | 0.962 0.272

c | 0.192 -0.68

>>> print(R)

A B

----------

0 | 5.2 2.12

1 | 0 3.54

>>> b = Vec({’a’,’b’,’c’}, {’a’:1,’b’:-1})

>>> x = QR_solve(A,b)

>>> x

Vec({’A’, ’B’},{’A’: -0.269..., ’B’: 0.115...})

A good way to test your solution is to verify that the residual is (approximately) orthogonal to the columns
of A:

>>> A.transpose()*(b-A*x)

Vec({’A’, ’B’},{’A’: -2.22e-16, ’B’: 4.44e-16})

6


