
machine learning lab

Coding the Matrix, Summer 2013

Please fill out the stencil file named “machine learning lab.py”. While we encourage you to complete the
Ungraded Problems, they do not require any entry into your stencil file.

In this lab you will use a rudimentary machine-learning algorithm to learn to diagnose breast cancer from
features.

The core idea is the use of gradient descent, an iterative method to find a “best” hypothesis. Gradi-
ent descent is useful in finding a point that nearly minimizes a nonlinear function. In each iteration, it
approximates the function by a linear function.

Disclaimer: For this particular function, there is a much faster and more direct way of finding the best
point. We will learn it in Orthogonalization. However, gradient descent is useful more generally and is well
worth knowing.

1 The data

You are given part of the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. For each patient, you are
given a vector a giving features computed from digitized images of a fine needle aspirate of a breast mass
for that patient. The features describe characteristics of the cell nuclei present in the image. The goal is to
decide whether the cells are malignant or benign.

Here is a brief description of the way the features were computed. Ten real-valued quantities are computed
for each cell nucleus:

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter2/ area)

1



• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation”)

The mean, standard error, and a measure of the largest (mean of the three largest values) of these features
were computed for each image. Thus each specimen is represented by a vector a with thirty entries. The
domain D consists of thirty strings identifying these features, e.g. "radius (mean)", "radius (stderr)",
"radius (worst)", "area (mean)", and so on.

The procedure read_training_data in the cancer_data module takes a single argument, a string giving
the pathname of a file. It reads the data in the specified file and returns a pair (A, b) where:

• A is a Mat whose row labels are patient identification numbers and whose column-label set is D

• b is a vector whose domain is the set of patient identification numbers, and b[r] is 1 if the specimen of
patient r is malignant and is -1 if the specimen is benign.

Ungraded Task: Use read_training_data to read the data in the file train.data into the variables
A, b.

2 Supervised learning

Your goal is to write a program to select a classifier, a function C(y) that, given a feature vector a, predicts
whether the tissue is malignant or benign. To enable the program to select a classifier that is likely to be
accurate, the program is provided with training data consisting of labeled examples (a1, b1), . . . , (am, bm).
Each labeled example consists of a feature vector ai and the corresponding label bi, which is +1 or -1 (+1 for
malignant, -1 for benign). Once the program has selected a classifier, the classifier is tested for its accuracy
on unlabeled feature vectors a for which the correct answers are known.

3 Hypothesis class

A classifier is selected from a set of possible classifiers (the hypothesis class). In this case (as is often the
case in machine learning), the hypothesis class consists of linear functions h(·) from the space RD of feature
vectors to R. The classifier is defined in terms of such a function as follows:

C(y) =

{
+1 if h(y) ≥ 0
−1 if h(y) < 0

For each linear function h : RD −→ R, there is a D-vector w such that

h(y) = w · y

Thus selecting such a linear function amounts to selecting a D-vector w. We refer to w as a hypothesis
vector since choosing w is equivalent to choosing the hypothesis h.

You will write a procedure that calculates, for a given hypothesis vector w, the number of labeled
examples incorrectly predicted by the classifier that uses function h(y) = w · y. To make this easier, you
will first write a simple utility procedure.

2



Task 1: Write the procedure signum(u) with the following spec:

• input: a Vec u

• output: the Vec v with the same domain as u such that

v[d] =

{
+1 if u[d] ≥ 0
−1 if u[d] < 0

For example, signum(Vec({’A’,’B’}, {’A’:3, ’B’:-2})) is Vec({’A’, ’B’},{’A’: 1, ’B’: -1}).

Task 2: Write the procedure fraction wrong(A, b, w) with the following spec:

• input: An R × C matrix A whose rows are feature vectors, an R-vector b whose entries are +1 and
−1, and a C-vector w

• output: The fraction of of row labels r of A such that the sign of (row r of A) ·w differs from that of
b[r].

(Hint: There is a clever way to write this without any explicit loops using matrix-vector multiplication and
dot-product and the signum procedure you wrote.)

Pick a simple hypothesis vector such as [1, 1, 1, ..., 1] or a random vector of +1’s and -1’s, and see how
well it classifies the data.

4 Selecting the classifier that minimizes the error on the training data

How should the function h be selected? We will define a way of measuring the error of a particular choice of
h with respect to the training data, and the program will select the function with the minimum error among
all classifiers in the hypothesis class.

The obvious way of measuring the error of a hypothesis is by using the fraction of labeled examples the
hypothesis gets wrong, but it is too hard to find the solution that is best with respect to this criterion, so
other ways of measuring the error are used. In this lab, we use a very rudimentary measure of error. For
each labeled example (ai, bi), the error of h on that example is (h(ai)− bi)2. If h(ai) is close to bi then this
error is small. The overall error on the training data is the sum of the errors on each of the labeled examples:

(h(a1)− b1)2 + (h(a2)− b2)2 + · · ·+ (h(am)− bm)2

Recall that choosing a function h(·) is equivalent to choosing a D-vector w and defining h(y) = y ·w. The
corresponding error is

(a1 ·w − b1)2 + (a2 ·w − b2)2 + · · ·+ (am ·w − bm)2

Now we can state our goal for the learning algorithm. We define a function L : RD −→ R by the rule

L(x) = (a1 · x− b1)2 + (a2 · x− b2)2 + · · ·+ (am · x− bm)2

This function is the loss function on the training data. It is used to measure the error of a particular choice
of the hypothesis vector w. The goal of the learning algorithm is to select the hypothesis vector w that
makes L(w) as small as possible (in other words, the minimizer of the function L).

One reason we chose this particular loss function is that it can be related to the linear algebra we are
studying. Let A be the matrix whose rows are the training examples a1, . . . ,am. Let b be the m-vector whose
ith entry is bi. Let w be a D-vector. By the dot-product definition of matrix-vector multiplication, entry i of
the vector Aw−b is ai ·w−bi. The squared norm of this vector is therefore (a1 ·w−b1)2+· · ·+(am ·w−bm)2.
It follows that our goal is to select the vector w minimizing ‖Aw − b‖2.

3



In Orthogonalization, we learn that this computational problem can be solved by an algorithm that uses
orthogonality and projection.

Task 3: Write a procedure loss(A, b, w) that takes as input the training data A, b and a hypothesis
vector w, and returns the value L(w) of the loss function for input w. (Hint: You should be able to write
this without any loops, using matrix multiplication and dot-product.)

Find the value of the loss function at a simple hypothesis vector such as the all-ones vector or a random
vector of +1’s and -1’s.

5 Nonlinear optimization by hill-climbing

In this lab, however, we use a generic and commonly used heuristic for finding the minimizer of a function,
hill-climbing. I call it generic because it can be used for a very broad class of functions; however, I refer to
it as a heuristic because in general it is not guaranteed to find the true minimum (and often fails to do so).
Generality of applicability comes at a price.

Hill-climbing maintains a solution w and iteratively makes small changes to it, in our case using vector
addition. Thus it has the general form

initialize w to something
repeat as many times as you have patience for:
w := w + change

return w

where change is a small vector that depends on the current value of w. The goal is that each iteration
improves the value of the function being optimized.

Imagine that the space of solutions forms a plane. Each possible solution w is assigned a value by the
function being optimized. Interpret the value of each solution as the altitude. One can visualize the space
as a three dimensional terrain.

If we were trying to find a maximizer of the function, the algorithm gradually move the solution w towards
the top of the terrain, thus the name hill-climbing.

In our case, the goal is to find the lowest point, so it’s better to visualize the situation thus:

4



In this case, the algorithm tries to climb down the hill.
The strategy of hill-climbing works okay when the terrain is simple, but it is often applied to much more

complicated terrains, e.g.

In such cases, hill-climbing usually terminates with a solution that is not truly a minimum for that function.
Intuitively, the algorithm descends a hill until gets to the lowest point in a valley. It has not reached the
point of smallest elevation—that point is somewhere far from the valley—but the algorithm cannot proceed
because it is only allowed to descend, and there is nowhere nearby that has lower elevation. Such a point
is called a local minimum (as opposed to a global minimum). This is an annoying aspect of hill-climbing
but it is inevitable since hill-climbing can be applied to functions for which finding the global minimum is a
computationally intractable problem.

6 Gradient

How should the change vector be selected in each iteration?

Example 0.2: Suppose the function to be minimized were a linear function, say f(w) = c ·w. Suppose
we change w by adding some vector u for which c · u < 0. It follows that f(w + u) < f(w) so we will
make progress by assigning w + u to w. Moving in the direction u decreases the function’s value.

In this lab, however, the function to be minimized is not a linear function. As a consequence, the right
direction depends on where you are. for each particular point w, there is in fact a direction of steepest
descent from that point. We should move in that direction! Of course, once we’ve moved a little bit, the
direction of steepest descent will have changed, so we recompute it and move a little more. We can move
only a little bit in each iteration before we have to recompute the direction to move.

For a function f : Rn −→ R, the gradient of f , written ∇f , is a function from Rn to Rn. Note that it
outputs a vector, not a single number. For any particular input vector w, the direction of steepest ascent
of f(x) for inputs near w is ∇f(w), the value of the function ∇f applied to w. The direction of steepest
descent is the negative of ∇f(w).

5



The definition of the gradient is the one place in this course where we use calculus. If you don’t know
calculus, the derivation won’t make sense but you can still do the lab.

Definition 0.3: The gradient of f([x1, . . . , xn]) is defined to be[
∂f

∂x1
, . . . ,

∂f

∂xn

]

Example 0.4: Let’s return once more to the simple case where f is a linear function: f(x) = c · x. That
means, of course, f([x1, . . . , xn]) = c1x1 + · · ·+ cnxn. The partial derivative of f with respect to xi is just
ci. Therefore ∇f([x1, . . . , xn]) = [c1, . . . , cn]. This function disregards its argument; the gradient is the
same everywhere.

Example 0.5: Let’s take a function that is not linear. For a vector a and a scalar b, define f(x) =
(a · x− b)2. Write x = [x1, . . . , xn]. Then, for j = 1, . . . , n,

∂f

∂xj
= 2(a · x− b) ∂

∂xj
(a · x− b)

= 2(a · x− b)aj

One reason for our choice of loss function

L(x) =

m∑
i=1

(ai · x− bi)2

is that partial derivatives of this function exist and are easy to compute (if you remember a bit of calculus).
The partial derivative of L(x) with respect to xj is

∂L

∂xj
=

m∑
i=1

∂

∂xj
(ai · x− bi)2

=

m∑
i=1

2(ai · x− bi)aij

where aij is entry j of ai.
Thus the value of the gradient function for a vector w is a vector whose entry j is

m∑
i=1

2(ai ·w − bi)aij

That is, the vector is

∇L(w) =

[
m∑
i=1

2(ai ·w − bi)ai1, . . . ,
m∑
i=1

∇L(w) = 2(ai ·w − bi)ain

]
which can be rewritten using vector addition as

m∑
i=1

2(ai ·w − bi)ai (1)

6



Task 4: Write a procedure find_grad(A, b, w) that takes as input the training data A, b and a hypothesis
vector w and returns the value of the gradient of L at the point w, using Equation 1. (Hint: You can write
this without any loops, by using matrix multiplication and transpose and vector addition/subtraction.)

7 Gradient descent

The idea of gradient descent is to update the vector w iteratively; in each iteration, the algorithm adds to
w a small scalar multiple of the negative of the value of the gradient at w. The scalar is called the step size,
and we denote it by σ.

Why should the step size be a small number? You might think that a big step allows the algorithm
to make lots of progress in each iteration, but, since the gradient changes every time the hypothesis vector
changes, it is safer to use a small number to as not to overshoot. (A more sophisticated method might adapt
the step size as the computation proceeds.)

The basic algorithm for gradient descent is then

Set σ to be a small number
Initialize w to be some D-vector
repeat some number of times:
w := w + σ(∇L(w)) return w

Task 5: Write a procedure gradient descent step(A, b, w, sigma) that, given the training data A, b
and the current hypothesis vector w, returns the next hypothesis vector.

The next hypothesis vector is obtained by computing the gradient, multiplying the gradient by the step
size, and subtracting the result from the current hypothesis vector. (Why subtraction? Remember, the
gradient is the direction of steepest ascent, the direction in which the function increases.)

Ungraded Task: Write a procedure gradient descent(A, b, w, sigma, T) that takes as input the
training data A, b, an initial value w for the hypothesis vector, a step size σ, and a number T of iterations.
The procedure should implement gradient descent as described above for T iterations, and return the final
value of w. It should use gradient descent step as a subroutine.

Every thirty iterations or so, the procedure should print out the value of the loss function and the fraction
wrong for the current hypothesis vector.

Ungraded Task: Try out your gradient descent code on the training data! Notice that the fraction wrong
might go up even while the value of the loss function goes down. Eventually, as the value of the loss function
continues to decrease, the fraction wrong should also decrease (up to a point).

The algorithm is sensitive to the step size. While in principle the value of loss should go down in each
iteration, that might not happen if the step size is too big. On the other hand, if the step size is too small,
the number of iterations could be large. Try a step size of σ = 2 · 10−9, then try a step size of σ = 10−9.

The algorithm is also sensitive to the initial value of w. Try starting with the all-ones vector. Then try
starting with the zero vector.

Ungraded Task: After you have used your gradient descent code to find a hypothesis vector w, see how
well this hypothesis works for the data in the file validate.data. What is the percentage of samples that

7



are incorrectly classified? Is it greater or smaller than the success rate on the training data? Can you explain
the difference in performance?

8


