
ANIMATIONS AND INTERACTIVE MATERIAL

FOR IMPROVING THE EFFECTIVENESS OF LEARNING THE

FUNDAMENTALS OF COMPUTER SCIENCE

by

William S. Gilley

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Osman Balci, Chairman

N. Dwight Barnette

Richard E. Nance

May 8, 2001

Blacksburg, Virginia

Keywords: animations, computer-based instruction, courseware, CS1, educational
technology, Flash, interactive learning, Introduction to Computer Science,
Java applets, multimedia.

ii

ANIMATIONS AND INTERACTIVE MATERIAL

FOR IMPROVING THE EFFECTIVENESS OF LEARNING THE

FUNDAMENTALS OF COMPUTER SCIENCE

by William S. Gilley

Committee Chair: Osman Balci
Computer Science

ABSTRACT

Due to the rapid proliferation of the World Wide Web (WWW) in recent years,

many educators are now seeking to improve the effectiveness of their instruction by

providing interactive, web-based course material to their students. The purpose of this

thesis is to document a set of eight online learning modules created to improve the

effectiveness of learning the fundamentals of Computer Science. The modules are as

follows:

1. Algorithms - Definition and specification of algorithms, with a comparison and

analysis of several sorting algorithms as examples.

2. Artificial Intelligence - Overview of current applications in this discipline.

3. Data Structures - Explanation of basic data structures, including an introduction to

computer memory and pointers, and a comparison of logical and physical

representations of commonly used data structures.

4. Machine Architecture - Explanation of data storage, gates and circuits, and the

central processing unit.

5. Number Systems - Discussion of number representation and arithmetic in number

systems other than the decimal number system, with a focus on binary numbers

and binary arithmetic.

6. Operating Systems - Explanation of the purpose of operating systems and the

major components that make up an operating system.

7. Programming Languages - Explanation of the fundamental concepts in procedural

programming languages.

8. Software Engineering - Introduction to software life cycle models and an

overview of the procedural and object-oriented paradigms.

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/index.html
http://courses.cs.vt.edu/csonline/AI/Lessons/index.html
http://courses.cs.vt.edu/csonline/DataStructures/Lessons/index.html
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html
http://courses.cs.vt.edu/csonline/OS/Lessons/index.html
http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/index.html
http://courses.cs.vt.edu/csonline/SE/Lessons/index.html

iii

Each module consists of a set of lessons and review questions written in HyperText

Markup Language (HTML). Embedded in these pages are various interactive

components implemented as Flash animations or Java applets. The modules currently

reside on the Computer Science courseware server of Virginia Polytechnic Institute and

State University (Virginia Tech) and can be viewed at the following WWW site:

http://courses.cs.vt.edu/csonline/.

http://courses.cs.vt.edu/csonline/index.html

iv

ACKNOWLEDGEMENTS

First of all, I want to thank my Lord and Savior Jesus Christ who is my constant

refuge and strength (Psalm 62:7-8). Second, I want to thank my mother and father for

their wisdom in sending me to Virginia Tech to study and their help throughout my years

of graduate school. Third, I want to thank Dr. Balci for working as my advisor and

giving me much wise counsel during the past two years of graduate school. I also want to

thank Dwight Barnette and Dr. Lee for their ideas and guidance as I designed various

online modules. Fourth, I want to thank Rob Adams and Emre Tunar who actually

programmed most of the animations and applets I designed. Fifth, I want to thank Dr.

Nance for sitting on my committee at the last moment and for his insightful criticisms.

And last, I want to thank the Bakers who graciously had me in their home nearly every

week to eat so that I would not die from my diet of Ramen noodles.

v

TABLE OF CONTENTS

ABSTRACT..ii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS.. v

LIST OF FIGURES..viii

LIST OF TABLES .. x

1 INTRODUCTION ...1-1

1.1 STATEMENT OF THE PROBLEM ...1-1

1.2 STATEMENT OF THE OBJECTIVES...1-3
1.2.1 Providing Access to the Modules via the WWW...1-3
1.2.2 Teaching the Topics in an Interactive, Animated Manner1-3
1.2.3 Reusing Existing Material ..1-4
1.2.4 Implementing Independent, Extendable Modules..1-5

1.3 OVERVIEW OF THE THESIS ...1-6

2 RELATED WORKS..2-1

2.1 MULTIMEDIA LEARNING MATERIAL FOR NON-CS COURSES2-1
2.1.1 Essential Chemistry Flash Animations ..2-1
2.1.2 Explorations QuickTime Animations ..2-2
2.1.3 Environmental Science RealMedia Animations ..2-2
2.1.4 SABLE Applets..2-2

2.2 MULTIMEDIA LEARNING MATERIAL FOR CS COURSES2-3
2.2.1 PACER...2-3
2.2.2 The HyperLearning Center...2-3
2.2.3 Operating Systems 85349...2-4
2.2.4 The Analytical Engine Online..2-4

2.3 ARCHIVES OF MULTIMEDIA RESOURCES...2-5

3 PROJECT TOOLS AND TECHNOLOGY...3-1

3.1 HARDWARE TOOLS...3-1

3.2 SOFTWARE TOOLS ..3-1
3.2.1 Dreamweaver 2.0 ...3-1
3.2.2 Flash 4.0 ...3-1
3.2.3 Fireworks 3.0 and Paint Shop Pro 6.0..3-1
3.2.4 Java...3-2

vi

4 COMPUTER SCIENCE ONLINE MODULES ..4-1

4.1 ALGORITHMS..4-1
4.1.1 Manual Sort Animation..4-3
4.1.2 Swap Operation Animation..4-3
4.1.3 Simple Sort Algorithm Animation ...4-4
4.1.4 Insertion Sort Algorithm Animation ..4-5
4.1.5 Selection Sort Algorithm Animation..4-5
4.1.6 Sort Quiz Applet ..4-5
4.1.7 Space Efficiency Quiz..4-6
4.1.8 Time Efficiency Quizzes..4-7
4.1.9 Selection Sort Algorithm Analysis Animation...4-7
4.1.10 Simple/Insertion Sort Analysis Quizzes...4-8

4.2 ARTIFICIAL INTELLIGENCE..4-9
4.2.1 Humans Versus Computers Animation..4-10
4.2.2 Checkers Applet ...4-10
4.2.3 ELIZA Applet ..4-11
4.2.4 Eight-Puzzle Applet ...4-12
4.2.5 JRec Applet ..4-13

4.3 DATA STRUCTURES ..4-14
4.3.1 Ordered Arrays Animation...4-15
4.3.2 Ordered Linked List Animation ...4-16
4.3.3 Abstract Stack Animation ..4-17
4.3.4 Abstract Queue Animation...4-17
4.3.5 Queue Applet..4-18
4.3.6 Two-Dimensional Arrays Animation...4-19
4.3.7 Graph Animation..4-20
4.3.8 Bag Abstract Data Type Applet ...4-21

4.4 MACHINE ARCHITECTURE..4-22
4.4.1 Data Representation Applet ...4-23
4.4.2 Simcir Applet ...4-24
4.4.3 Latch Animation...4-24
4.4.4 Sum Program/Count Program Animations ..4-25

4.5 NUMBER SYSTEMS..4-26
4.5.1 Conversion ...4-27

4.5.1.1 Binary to Decimal Conversion Animation...4-27
4.5.1.2 Decimal to Binary Conversion Animation...4-29
4.5.1.3 Decimal to Binary Conversion with Fractions.......................................4-29

4.5.2 Binary Arithmetic...4-30
4.5.2.1 Adding Two Binary Numbers Animation..4-30
4.5.2.2 Adding Multiple Binary Numbers Animation4-30
4.5.2.3 Binary Subtraction Animation ...4-31
4.5.2.4 Binary Multiplication Animation ...4-31
4.5.2.5 Binary Division Animation ..4-32

4.5.3 Complements..4-32

vii

4.5.3.1 Binary Subtraction with 1’s Complement Animation............................4-32
4.5.3.2 Binary Subtraction with 2’s Complement Animation............................4-33

4.6 OPERATING SYSTEMS ..4-33
4.6.1 Nursery Game Applet...4-34
4.6.2 Process State Diagram..4-35
4.6.3 Process Scheduling Simulation Applet ..4-36
4.6.4 Mutex Demonstration Applet...4-37
4.6.5 Bounded Buffer Demonstration Applet ...4-37
4.6.6 Dining Philosophers Applet ...4-38
4.6.7 Memory Allocation Applet ..4-39
4.6.8 Virtual Memory Simulation Applet ...4-40
4.6.9 Simulation of Page Replacement Algorithms Applet4-41
4.6.10 File System Allocation Applets..4-42

4.7 PROGRAMMING LANGUAGES..4-43
4.7.1 Code Representations Animation...4-44
4.7.2 Variables and Assignment Animation..4-45
4.7.3 Simple Assignment Machine Applet..4-46
4.7.4 Data Types Animation ...4-46
4.7.5 Selection Exercises...4-47
4.7.6 Loops Demonstration Animation ...4-48
4.7.7 Call/Trace Power Animations ..4-48
4.7.8 Parameter Passing Animation ..4-49
4.7.9 Selection Sort Applet ...4-50

4.8 SOFTWARE ENGINEERING ..4-50
4.8.1 Software Engineering Quiz Applet ..4-51
4.8.2 Waterfall Model Animation ...4-52
4.8.3 Waterfall Model Review Quiz ...4-53
4.8.4 The Spiral Model Animation..4-54
4.8.5 Selection Sort Applet ...4-54
4.8.6 Abstract Data Type Applets ...4-54
4.8.7 Inheritance Animation..4-55

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK............5-1

5.1 CONCLUSIONS..5-1

5.2 RECOMMENDATIONS FOR FUTURE WORK...5-3

BIBLIOGRAPHY ..Bib-1

VITA ...Vita-1

viii

LIST OF FIGURES

Figure 1.1 Interactive use of the ELIZA applet ..1-4
Figure 1.2 Modified eight-puzzle applet ...1-5
Figure 4.1 Manual Sort Animation ...4-3
Figure 4.2 Swap Operation Animation ...4-4
Figure 4.3 Simple Sort Algorithm Animation...4-5
Figure 4.4 Sort Quiz Applet ..4-6
Figure 4.5 Space Efficiency Quiz ...4-7
Figure 4.6 Selection Sort Algorithm Analysis Animation ..4-8
Figure 4.7 Insertion Sort Analysis Quiz..4-8
Figure 4.8 Humans Versus Computers Animation ...4-10
Figure 4.9 Checkers Applet...4-11
Figure 4.10 Eliza Applet ...4-12
Figure 4.11 Eight-Puzzle Applet...4-13
Figure 4.12 JRec Applet..4-14
Figure 4.13 Ordered Arrays Animation ..4-16
Figure 4.14 Ordered Linked List Animation...4-16
Figure 4.15 Abstract Stack Animation..4-17
Figure 4.16 Abstract Queue Animation ..4-18
Figure 4.17 Queue Applet ...4-19
Figure 4.18 Two-Dimensional Arrays Animation ..4-20
Figure 4.19 Graph Animation ...4-20
Figure 4.20 Bag Applet ...4-22
Figure 4.21 Data Representation Applet ...4-23
Figure 4.22 Simcir Applet ...4-24
Figure 4.23 Latch Animation ..4-25
Figure 4.24 Sum Program Animation ...4-26
Figure 4.25 Animation controls ..4-27
Figure 4.26 Binary to Decimal Conversion Animation ..4-27
Figure 4.27 Decimal to Binary Conversion Animation ..4-29
Figure 4.28 Decimal to Binary Conversion with Fractions Animation4-29
Figure 4.29 Adding Two Binary Numbers Animation ...4-30
Figure 4.30 Adding Multiple Binary Numbers Animation ...4-31
Figure 4.31 Binary Subtraction Animation ...4-31
Figure 4.32 Binary Multiplication Animation...4-32
Figure 4.33 Binary Division Animation..4-32
Figure 4.34 Binary Subtraction with 1's Complement Animation................................4-33
Figure 4.35 Binary Subtraction with 2's Complement Animation................................4-33
Figure 4.36 Nursery Game Applet ..4-35
Figure 4.37 Process State Diagram Animation ...4-36
Figure 4.38 Process Scheduling Simulation Applet..4-36
Figure 4.39 Mutex Demonstration Applet ..4-37
Figure 4.40 Bounded Buffer Demonstration Applet ...4-38
Figure 4.41 Dining Philosophers Applet...4-39

ix

Figure 4.42 Memory Allocation Applet ..4-40
Figure 4.43 Virtual Memory Simulation Applet...4-41
Figure 4.44 Simulation of Page Replacement Algorithms Applet................................4-42
Figure 4.45 File System Allocation Applet...4-43
Figure 4.46 Code Representations Animation ..4-45
Figure 4.47 Variables and Assignment Animation ...4-45
Figure 4.48 Simple Assignment Machine Applet ...4-46
Figure 4.49 Data Types Animation ...4-47
Figure 4.50 Selection Exercises ..4-47
Figure 4.51 Loops Demonstration Animation...4-48
Figure 4.52 Call/Trace Power Animations..4-49
Figure 4.53 Parameter Passing Animation..4-49
Figure 4.54 Selection Sort Applet ...4-50
Figure 4.55 Software Engineering Quiz Applet..4-52
Figure 4.56 Waterfall Model Animation...4-53
Figure 4.57 Waterfall Model Review Quiz...4-53
Figure 4.58 Spiral Model Animation ..4-54
Figure 4.59 Inheritance Animation ...4-55
Figure 5.1 Handwriting Recognition Examples..5-2

x

LIST OF TABLES

Table 4.1 Lessons in the Algorithms Module ...4-2
Table 4.2 Lessons in the Artificial Intelligence Module...4-9
Table 4.3 Lessons in the Data Structures Module...4-15
Table 4.4 Lessons in the Machine Architecture Module ..4-23
Table 4.5 Lessons in the Number Systems Module ..4-28
Table 4.6 Lessons in the Operating Systems Module ...4-34
Table 4.7 Lessons in the Programming Languages Module ...4-44
Table 4.8 Lessons in the Software Engineering Module ..4-51

1-1

1 INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

Due to the rapid proliferation of the World Wide Web (WWW) in recent years,

many educators are now seeking to improve the effectiveness of their instruction by

providing interactive, web-based course material to their students. Why is this? First, the

WWW allows educators to provide instruction beyond the bounds of the classroom. By

providing supplemental learning material through the WWW, students can review

information and learn at their own pace outside of class. Such material also gives

students a non-intimidating environment in which to explore and answer questions that

may not be practically answered in a large class with rigid time constraints.

Second, the WWW supports the development of interactive teaching material in

which students “learn-by-doing” [Schank 1994] rather than just reading and memorizing.

Through the use of multimedia development tools such as Flash and Java, educators can

now create material that engages students to learn through active participation rather than

passive absorption.

Third, the WWW provides a convenient means for reuse and sharing of

educational materials. This change opens the possibility for educators to reuse existing

materials rather than redeveloping something that already exists. It also allows educators

to develop new materials and make these immediately available to others [Tsichritzis

1999].

Of course, it would be naive to assume that recent changes in technology have

resulted only in new opportunities and introduced no new challenges. The reality is that

many difficult challenges exist to developing beneficial, interactive learning material.

One such challenge is the enormous development overhead associated with creating

quality educational materials that promote interaction. Pilgrim et al. [1997] estimate that

“material corresponding to one hour of student interaction may take up to 200 person-

hours to develop.” Another challenge is the development of material that truly exploits

the potential of interactive multimedia. While posting existing slides and lecture notes on

the WWW is easy, just making this information available by a new medium is not likely

to increase the effectiveness of learning.

1-2

This thesis documents the work of a year-long project funded by the Center for

Innovation in Learning at Virginia Polytechnic Institute and State University (Virginia

Tech). The purpose of this project was to develop interactive course material for

improving the effectiveness of learning the fundamentals of Computer Science by

utilizing the unique advantages of multimedia and the WWW and attempting to mitigate

their present challenges. During the course of the project, the project team developed

eight web-based learning modules that span the fundamental topics of Computer Science.

The modules are as follows:

1. Algorithms - Definition and specification of algorithms, with a comparison and

analysis of several sorting algorithms as examples.

2. Artificial Intelligence - Overview of current applications in this discipline.

3. Data Structures - Explanation of basic data structures, including an introduction to

computer memory and pointers, and a comparison of logical and physical

representations of commonly used data structures.

4. Machine Architecture - Explanation of data storage, gates and circuits, and the

central processing unit.

5. Number Systems – Discussion of number representation and arithmetic in number

systems other than the decimal number system, with a focus on binary numbers

and binary arithmetic.

6. Operating Systems - Explanation of the purpose of operating systems and the

major components that make up an operating system.

7. Programming Languages - Explanation of the fundamental concepts in procedural

programming languages.

8. Software Engineering - Introduction to software life cycle models and an

overview of the procedural and object-oriented paradigms.

Each module consists of a set of lessons and review questions written in HyperText

Markup Language (HTML). Embedded in these pages are various interactive

components implemented as Flash animations and Java applets. The eight modules now

reside on the Computer Science courseware server of Virginia Tech and can be viewed at

the following WWW site: http://courses.cs.vt.edu/csonline/.

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/index.html
http://courses.cs.vt.edu/csonline/AI/Lessons/index.html
http://courses.cs.vt.edu/csonline/DataStructures/Lessons/index.html
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html
http://courses.cs.vt.edu/csonline/OS/Lessons/index.html
http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/index.html
http://courses.cs.vt.edu/csonline/SE/Lessons/index.html
http://courses.cs.vt.edu/csonline/index.html

1-3

1.2 STATEMENT OF THE OBJECTIVES

Four main objectives guided the development of the learning modules:

(1) provide access to the modules via the WWW, (2) teach the topics in an interactive,

animated manner, (3) reuse existing material, and (4) implement independent, extendable

modules.

1.2.1 Providing Access to the Modules via the WWW

As stated earlier, the WWW affords unique opportunities to increase the

effectiveness of learning. Naps et al. [1997] discuss several particular advantages to

using the WWW as a medium for delivering interactive material. These include remote

accessibility to materials, support for distance learning, the development of system

independent applications, and the use of hypertext, an inherently interactive medium.

With these advantages in mind, we chose from the start of the project to design learning

material that would be web-based, that is, embedded in HTML pages.

1.2.2 Teaching the Topics in an Interactive, Animated Manner

Presenting material in an interactive manner is an effective technique for making

learning memorable. A good example of this principle is the ELIZA program, an early

program designed to mimic human intelligence through conversation. In his introductory

text to Computer Science, Brookshear [1997] cites this example and then attempts to

describe the functionality of the program. His use of this illustration is motivated by the

philosophical question of whether computers can possess real intelligence. While

describing the ELIZA system does give students a general idea of its purpose, it is not

nearly as memorable as using ELIZA (see Figure 1.1). For this project, we espoused the

latter approach to addressing the philosophical question of computer intelligence so that

students can decide for themselves whether computer intelligence can match human

intelligence.

1-4

Figure 1.1 Interactive use of the ELIZA applet

Presenting material in an animated manner is also an effective technique for

improving learning. Wetzel et al. [1994] describe a variety of characteristics that make

animations uniquely effective for instruction. First, animations allow an instructor to

emphasize the important parts of a subject by removing unnecessary and distracting

details. Second, animations have the ability to visually present subjects and ideas that

would be difficult to illustrate in the real world. Third, animations can aid in

discrimination by presenting cues that direct the viewer’s attention to salient points of the

presentation. Throughout the various animations in this project, we have attempted to

make use of these characteristics in order to make learning more effective.

1.2.3 Reusing Existing Material

Because of the large amount of time needed to develop quality materials, reusing

existing materials was a crucial objective. The philosophy that guided this principle was

“Don’t reinvent the wheel!” As a result, many of the Java applets we embedded in the

modules were included with the permission of the author and reused to illustrate various

topics. This approach helped significantly to mitigate the time challenge of developing

quality educational material. While most of the borrowed applets required some

modifications, these changes were significantly less time consuming than writing a

comparable applet from scratch. A good example of reuse in this project is the Eight-

1-5

puzzle applet (see Figure 1.2) in the Artificial Intelligence Module. Locating and

modifying this applet required approximately 20 person hours while developing a similar

applet from scratch would require anywhere from 50 to 100 person hours.

Figure 1.2 Modified eight-puzzle applet

1.2.4 Implementing Independent, Extendable Modules

The objective of implementing independent, extendable modules was another

strategy for mitigating the challenges of developing interactive material. While the

previous objective focused on reducing our development costs, this objective focuses on

reducing the costs of future developers by striving for a high level of cohesion in each

module. This allows other educators to download and install individual modules on their

own web servers. By reusing these modules, educators can immediately benefit from the

development time invested during this project with minimal added investment of their

own. In addition, the high level of cohesion within modules allows for easier

development and integration of future modules.

1-6

1.3 OVERVIEW OF THE THESIS

This thesis consists of five chapters. Chapter 1 discusses the advantages and

challenges of developing interactive learning modules for the WWW, discusses the four

objectives we used in developing our modules, and provides an overview of the thesis.

Chapter 2 surveys several related works that are currently accessible on the WWW.

Chapter 3 describes the hardware and software tools used to create the online modules.

Chapter 4 documents the eight modules we created with each subsection corresponding to

one module. The subsections state the learning objectives for the module and describe

the lessons and interactive components embedded in the module. Chapter 5 summarizes

the project, discusses some preliminary student responses to the modules, and makes

recommendations for future work.

2-1

2 RELATED WORKS

In this chapter, we present three areas of related work. First, we examine several

college-level resources outside the field of Computer Science that provide multimedia

learning material. These serve as general examples of what is currently being done to use

technology and the WWW to improve the effectiveness of learning. Second, we examine

several multimedia college-level resources within the field of Computer Science. Third,

we describe four archives of multimedia resources for Computer Science educators.

These archives provide a valuable resource for educators who desire to reuse existing

interactive material to improve the effectiveness of their own instruction.

2.1 MULTIMEDIA LEARNING MATERIAL FOR NON-CS COURSES

The following four web sites are examples of animations and applets that were

designed to improve the effectiveness of learning various college-level topics. The first

three sites are online resources created to accompany various college textbooks. The last

site is a collection of applets for teaching topics in Statistics to students from various

social science disciplines.

2.1.1 Essential Chemistry Flash Animations

This web site [Chang 2000] provides a collection of 18 interactive Flash

animations for teaching various concepts in chemistry. The animations include narration

that introduces the topic and instructs the student on how to interact with the animation.

The animations range in size from 175 KB to 1.1 MB, however, since the Flash format is

streamed, even the largest animation begins playing with very little wait. Students

interact by clicking on buttons at the bottom of the animation to jump to various scenes.

For example, one animation discusses radioactive decay by demonstrating how scientists

detect radioactive particles that are emitted by various elements. Students control the

animation by clicking buttons that correspond to the elements discussed in the animation.

Each of the animations at this site correspond to a particular chapter or topic in Robert

Chang’s chemistry textbook, Essential Chemistry. Chang’s support material also

includes some labs and quizzes, however, this material is not directly accessible from the

animations.

2-2

2.1.2 Explorations QuickTime Animations

This web site [Arny 2000] provides a collection of 43 QuickTime animations for

illustrating various concepts in astronomy. The animations include narration which is

also displayed as HTML text below the animation. These animations are quite large in

size ranging from 500 KB to 15 MB. They are also non-interactive and tend to be short

in length. For example, the largest animation has a running time of 30 seconds and

covers three sentences of narration. Each animation corresponds to a particular chapter

or topic in Thomas Arny’s astronomy textbook Explorations: An Introduction to

Astronomy. Arny’s web site also includes some labs and quizzes, however, this material

is not directly accessible from the animations.

2.1.3 Environmental Science RealMedia Animations

This web site [Enger and Smith 2001] provides a collection of 23 RealMedia

animations for illustrating various concepts in environmental science. The animations

include narration and can be accessed from online review quizzes. The size of the

animations ranges from 500 KB to several megabytes, however, the authors include a

disclaimer that these animations should be downloaded from a suitable high-speed

network connection. The animations are not interactive, however, the review quizzes ask

questions that cover the material presented in the linked animation. Each animation

corresponds to a chapter or topic in Enger and Smith’s textbook Environmental Science:

A Study of Interrelationships.

2.1.4 SABLE Applets

The Statistics Activity-Based Learning Environment (SABLE) [Shaffer 2000]

provides an collection of 11 tutorials with interactive Java applets that teach students

basic concepts from Statistics. The authors describe SABLE as a learning environment in

the following manner:

The student completes tasks that lead to an understanding of statistics principles
and their application to social sciences data. Each tutorial employs visualizations
of data and relationships and also allows the student to download and interact
with data sets collected in the General Social Survey and others. The Learning
Environment experience culminates in the student's use of the visualizations to
analyze and draw conclusions from real data.

2-3

Some of the topics covered by the tutorials include measures of central tendency and

dispersion, hypothesis testing, T-distributions, analysis of variance, and linear regression.

Each of the statistics tutorials are linked to a glossary of terms that is displayed in a frame

at the bottom of the screen. Students interact with the applets in a wide variety of ways.

For example, one applet which illustrates the concepts of median and mode displays two

histograms of data. Students are then given the following instructions:

You should see two copies of the histogram. The upper histogram allows you to
drag the red vertical line to help locate the median. Numbers on either side of the
red line show you how many values exist above and below the line. The lower
histogram allows you to move a triangle within the range of the distribution which
acts like a fulcrum for a see-saw. The mean is located at the point where the
histogram is balanced. Use these tools−the red vertical line and the fulcrum−to
find the median and mean of the data.

As the students drag the line and the fulcrum with the mouse, they can see the meaning of

median and mode visually.

2.2 MULTIMEDIA LEARNING MATERIAL FOR CS COURSES

The following five web sites are examples of collections of animations and

applets that were designed to improve the effectiveness of learning various Computer

Science topics.

2.2.1 PACER

Personally Active Computing Exploration Resource (PACER) [Palakal 1997] is a

WWW instructional supplement to the introductory computing courses at the Indiana

University-Purdue University at Indianapolis Department of Computer Science. PACER

consists of a set of Java applets to illustrate concepts in three areas of computer science:

computer logic, algorithms, and data structures. The applets are presented with minimal

instructions and no explanation of the topic being illustrated. The site also appears to be

incomplete since some of the topic links lead to pages stating that no applets exists for the

selected topic.

2.2.2 The HyperLearning Center

The HyperLearning Center [Denning and Menascé 1998] at George Mason

University provides a set of workbenches to “demonstrate advanced concepts from

2-4

computer systems.” The workbenches consist of 16 Java applets illustrating the

following topics:

• Performance of operating systems,

• Virtual memory,

• Synchronization in centralized operating systems,

• Synchronization in distributed systems,

• Election in distributed systems, and

• Process scheduling.

Each applet is accompanied by a brief introduction to the topic and instructions on using

the applet. The HyperLearning center also provides some tutorial modules on various

computer science topics. These modules are mainly text and graphics, however, some do

link to relevant workbenches in order to illustrate the topic interactively.

2.2.3 Operating Systems 85349

Operating Systems 85349 is a course offered by the Faculty of Informatics and

Communication at Central Queensland University (CQU). The course is taught both

online and at the university. The web site for the course [CQU 2000] contains some

audio lectures, complete lecture slides, and seven Flash animations. The animations

illustrate topics such as the instruction cycle, the process life cycle, and semaphores.

They are indexed according to the course textbook and are also directly accessible from

the lecture slides. Each animation includes a set of controls similar to a CD player that

allow viewers to stop, pause, skip ahead one frame, skip back one frame, or run the entire

animation.

2.2.4 The Analytical Engine Online

The Analytical Engine Online [Decker and Hirshfield 1998] is a collection of 10

online labs that supplement the textbook The Analytical Engine. The labs are interactive

exercises corresponding to the topics covered in the textbook. Most of the interactive

content centers around six Java applets: a CPU simulator, a Turing machine, a simple

inference engine, a logic simulator, a programming code parser, and a haiku poetry

generator. The parser and CPU simulator are nicely integrated such that code generated

2-5

from the parser applet can be executed on the simulator. The site also includes review

quizzes and an interactive game that are implemented with JavaScript.

2.3 ARCHIVES OF MULTIMEDIA RESOURCES

In addition to the web sites reviewed above, several archives of interactive

resources are available on the WWW. The first is the Computing Science Teaching

Center (CSTC) [CSTC 1999]. The mission statement of the CSTC states that “CSTC is

an internet-based repository of peer-reviewed teaching resources for computer science

educators” and the web site exists as “a framework for developing and distributing three

kinds of teaching materials: visualization tools, computing laboratories, and multimedia

resources.”

The second archive is the ACM Journal on Educational Resources in Computing

(JERIC) [JERIC 2000]. According to the journal charter, JERIC is

an electronic publication providing access to high quality, archival resources
suitable for use in support of computing education. Resources include scholarly
articles with wide applicability and potential impact as well as multimedia and
visualization resources, laboratory materials and other materials of practical use in
support of learning in the computing sciences.

The third archive is the Java Applet Rating Service (JARS) [JARS 2001]. This

rating service is composed of over 100 volunteers around the world who review Java

applets and applications. JARS maintains a database of program submissions that point

to resources on the WWW. This resource is particularly useful since it gives a reasonable

judgment of the value of existing interactive resources.

The final two archives are lists of links to other resources on the WWW. Peter

Brummund [1997] maintains the Complete Collection of Algorithm Animations. The

links to resources are organized both by site and by algorithm. Joseph Bergin [1997]

maintains a set of links to web based visualizations. This site was the result of a

workshop held at the 1997 Annual Joint Conference on Integrating Technology into

Computer Science Education. The resources are classified according to a hierarchy

developed by the workgroup (c.f., Naps et al. [1997]).

3-1

3 PROJECT TOOLS AND TECHNOLOGY

In order to develop the eight interactive learning modules, we purchased two

computers and various software tools with funding provided by the Center for Innovation

in Learning at Virginia Tech. These tools are described below.

3.1 HARDWARE TOOLS

The development platform for the learning modules was two Pentium III 500

MHz computers running Windows NT 4.0 with 256MB of RAM. These machines were

also equipped with 19 inch high-resolution monitors and video cards with 16MB of video

memory.

3.2 SOFTWARE TOOLS

3.2.1 Dreamweaver 2.0

Dreamweaver is a professional visual editor for creating and managing web

pages. This product was particularly helpful in two regards. First, the visual interface

simplified the creation of lesson pages and helped in designing the layout of the pages.

Second, Dreamweaver supports proprietary templates that make site-wide changes

possible by editing a single template. This feature was indispensable since the learning

modules contain over 1,300 web pages and required regular updates during development.

3.2.2 Flash 4.0

Flash is a tool for creating interactive, web-based animations. Interaction is

achieved through the use of Flash’s scripting language. This language makes it possible

for animations to detect user input such as mouse or keyboard events and respond with

scripted actions. This tool was the primary technology we used to create interactive

components.

3.2.3 Fireworks 3.0 and Paint Shop Pro 6.0

Both of these programs are graphical editors. Fireworks is optimized for the

design of web graphics (i.e., GIF and JPEG formats) while Paint Shop Pro is more

general and supports a wider range of formats. The primary use of these tools was the

3-2

design of graphics embedded in module lessons and the design of images used in various

interactive components.

3.2.4 Java

For the creation of applets, we used two different tools. The first tool was the Sun

Microsystems’ Java 2 Software Development Kit (SDK). This SDK is a free download

from Sun and provides all the necessary Java classes for applet development. The second

tool was Microsoft’s Visual J++ 6.0 Standard Edition. This tool provides an integrated

developing environment in addition to Microsoft’s own set of Java classes and virtual

machine.

4-1

4 COMPUTER SCIENCE ONLINE MODULES

This section describes the content of the eight online modules created during the

project. Each subsection corresponds to a single online module and includes a summary

of the lessons and interactive content contained in the module. For the reader’s

convenience, WWW links pointing to the appropriate lessons are included in the

discussion.

4.1 ALGORITHMS

The Algorithms Module consists of 20 lessons that introduce the topic of

algorithms by discussing the characteristics of a good algorithm and comparing several

sorting algorithms to illustrate algorithm efficiency and algorithm analysis. The learning

objectives for the module are as follows:

• Specify simple algorithms using Structured English,

• Sort numbers using Simple, Insertion, and Selection sorts, and

• Compare simple algorithms for space and time efficiency.

Table 4.1 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

4-2

Table 4.1 Lessons in the Algorithms Module

Lessons Interactive Components †
Introduction to Algorithms – discussion of the relationship

between algorithms and Computer Science • Manual Sort (F)

The Definition of an Algorithm – discussion of five
characteristics of an algorithm

Specifying Algorithms – examples of ways to specify
algorithms

Sorting Algorithms – introduction to the problem of sorting

Basic Operations – explanation of the comparison and swap
operations • Swap Operation (F)

The Simple Card Sort – introduction to this algorithm using
playing cards

• Simple Card Sort (F)
• Sort Quiz (J)

The Simple Sort – discussion of how this algorithm is
performed on a list of numbers in a computer

The Insertion Card Sort – introduction to this algorithm
using playing cards

• Insertion Card Sort (F)
• Sort Quiz (J)

The Insertion Sort – discussion of how this algorithm is
performed on a list of numbers in a computer

The Selection Card Sort – introduction to this algorithm
using playing cards

• Selection Card Sort (F)
• Sort Quiz (J)

The Selection Sort – discussion of how this algorithm is
performed on a list of numbers in a computer

Algorithm Analysis – introduction to space and time
efficiency

Space Efficiency – discussion of the space efficiency of the
three sorting algorithms • Space Efficiency Quiz (F)

Time Efficiency – discussion of the time efficiency of the
three sorting algorithms • Time Efficiency Quiz (F)

Comparison of Sorts – comparative analysis of the three
sorting algorithms

Analysis of Selection Sort – application of worst-case
analysis to this sort • Selection Sort Algorithm Analysis (F)

Analysis of Other Sorts – application of worst-case analysis
to Simple and Insertion sorts

Worst Case Comparison – comparative analysis of the three
sorting algorithms in the worst case • Sort Analysis Quizzes (F)

Order Notation – introduction to order notation

Summary – review of the main ideas in Algorithms

† (F) – Flash animation (J) – Java applet

4-3

4.1.1 Manual Sort Animation
This animation illustrates the concept of an algorithm by asking students to sort a

sequence of letters and a sequence of playing cards. They are also asked to record the

steps they used so that another person could perform the same sort. In this way the

students have written their own sorting algorithm before being introduced to the

“official” sorting algorithms later in the module. The animation encourages interactivity

by allowing students to manipulate the letters or playing cards with the mouse (see Figure

4.1). Once the objects are in sorted order, the animation automatically advances to the

next scene.

Use the mouse to drag the playing cards so
that they are sorted from smallest to highest.

Figure 4.1 Manual Sort Animation

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/Introduction/index.html

4.1.2 Swap Operation Animation

This animation demonstrates a simple algorithm for swapping two numbers in

memory and the need to create an additional temporary memory cell to complete the

operation. Students are first asked to attempt the swap operation by dragging numbers

between two memory cells. The approach, however, always causes one of the original

numbers to be lost. To correct this problem, students are then asked to perform the swap

operation again with the help of a third memory cell (see Figure 4.2). In addition to

teaching the swap operation, this animation shows how new operations (e.g., the swap

operation) can be composed of basic operations (e.g., the copy operation).

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/Introduction/index.html

4-4

Then we copy the contents of cell B to
cell A. Although the 4 replaces the 5, we

still have a copy of the 5 in temp.

Continue

Cell A Cell Btemp

45 545

Figure 4.2 Swap Operation Animation

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/BasicOperations/index.html

4.1.3 Simple Sort Algorithm Animation

This animation teaches students how to sort numbers using a basic sorting

algorithm called the Simple Sort. Other names for this algorithm include the Min-Max

Sort or the Two-Array Selection Sort. The animation demonstrates this sort procedure

using the familiar problem of ordering playing cards by their face values. Each step of

the algorithm is illustrated in the top half of the animation while the associated step of the

algorithm is highlighted in red at the bottom (see Figure 4.3). The animation is

accompanied by narration so students can focus on the algorithm rather than trying to

read the explanation. Students also control the pace of the animation by a “Continue”

button to advance to the next scene or a “Replay” button to repeat the current scene.

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/BasicOperations/index.html

4-5

Simple Sort Algorithm Now we compare our unsorted cards
again. 7 is less than 8, but 5 is less than 7.
Now 5 is our smallest card. 4 is less than
5, so 4 is the smallest. 4 is less than 6,
which makes 4 our smallest unsorted card,
so we move it to the sorted hand.

6. Stop

1. Get a hand of unsorted cards

2. Repeat steps 3 through 5 until the unsorted hand is empty

3. Compare unsorted cards

4. Select the smallest unsorted card

5. Move this card to the sorted hand

Figure 4.3 Simple Sort Algorithm Animation

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SimpleCardSort/index.html

4.1.4 Insertion Sort Algorithm Animation

This animation teaches students how to sort items using the Insertion Sort

algorithm. The layout and functionality of the animation are similar to the Simple Sort

Algorithm described above.
Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/InsertionCardSort/index.html

4.1.5 Selection Sort Algorithm Animation

This animation teaches students how to sort items using the Selection Sort

algorithm. The layout and functionality of the animation are similar to the Simple Sort

Algorithm described above.
Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SelectionCardSort/index.html

4.1.6 Sort Quiz Applet

The Sort Quiz applet tests student comprehension of the three sorting algorithms

presented in this module. Students select one of the algorithms via the set of radio

buttons at the bottom of the applet (see Figure 4.4). The applet then creates a random

permutation of the playing cards and prompts the student to enter the order of the cards

after one step of the sort. The applet displays the correct answer after two incorrect

attempts to input the next order of the cards. Students can also choose the “Show

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SimpleCardSort/index.html
http://courses.cs.vt.edu/csonline/Algorithms/Lessons/InsertionCardSort/index.html
http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SelectionCardSort/index.html

4-6

Answer” button to watch the applet sort the cards in step-by-step fashion. Since seven

unique numbers are used for the quiz, each sort has over 5,000 possible permutations.

Figure 4.4 Sort Quiz Applet

Link: http://courses.cs.vt.edu/csonline/Algorithms/Questions/SortQuiz/SortQuizSelection.html

4.1.7 Space Efficiency Quiz

This quiz teaches students how to measure space efficiency by comparing the

number of memory cells required by the three sorts in this module. The quiz is actually a

simple Flash animation that responds with a green check for each correct answer and a

red X for each incorrect answer. Students can go directly to the lessons explaining the

various sorting algorithms by clicking on the name of the algorithm in the left column

(see Figure 4.5).

http://courses.cs.vt.edu/csonline/Algorithms/Questions/SortQuiz/SortQuizSelection.html

4-7

Algorithm # of memory
cells needed

Simple Sort

Selection Sort

Insertion Sort

14

7

8

Check Answers

Figure 4.5 Space Efficiency Quiz

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SpaceEfficiency/index.html

4.1.8 Time Efficiency Quizzes

These quizzes teach students how to measure time efficiency by calculating the

number of comparisons and swaps required by the Insertion Sort and the Selection Sort.

The design of these quizzes is similar to the Space Efficiency Quiz above.
Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/TimeEfficiency/index.html

4.1.9 Selection Sort Algorithm Analysis Animation

This animation introduces the concept of mathematical algorithm analysis by

presenting a worst-case analysis of the Selection Sort. First, the animation demonstrates

a technique for counting and recording the number of comparisons and swaps performed

by the sort at each step of the algorithm (see Figure 4.6). Next, the animation shows how

to derive a mathematical formula from this data and explains that these formulas are

useful for calculating the algorithm efficiency when sorting lists of arbitrary sizes.

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/SpaceEfficiency/index.html
http://courses.cs.vt.edu/csonline/Algorithms/Lessons/TimeEfficiency/index.html

4-8

3 is less than 4, 3 is greater than 2, and 2
is greater than 1. To sort this number, we
need 3 comparisons and 1 swap. Now we
order the next number. 4 is greater than 2,
and 2 is less than 3. To sort this number,
we need 2 comparisons and 1 swap. Now
we order the last number. 4 is greater than
3. To sort this number, we only need 1
comparison and 1 swap.

Table of Operations

Step Comparisons Swaps

1

2

3

3 1

2 1

4 321

MIN

Figure 4.6 Selection Sort Algorithm Analysis Animation

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/WorstCaseSelectionSort/index.html

4.1.10 Simple/Insertion Sort Analysis Quizzes

These two quizzes build on the material presented in the Selection Sort Algorithm

Analysis animation above. The quizzes require students to build a data table similar to

the one illustrated in the previous animation. Clicking the title of the quiz (see Figure

4.7) will open a new browser window displaying the lesson of the associated sort so that

students can review the algorithm. Similar to the Space Efficiency Quiz, correct answers

are indicated by a green check and incorrect answers by a red X.

Steps # of comparisons
needed

of swaps
needed

3

2

1

1
2
3

2

1

Insertion Sort

Check Answers

Figure 4.7 Insertion Sort Analysis Quiz

Link: http://courses.cs.vt.edu/csonline/Algorithms/Lessons/WorstCaseOtherSorts/index.html

http://courses.cs.vt.edu/csonline/Algorithms/Lessons/WorstCaseSelectionSort/index.html
http://courses.cs.vt.edu/csonline/Algorithms/Lessons/WorstCaseOtherSorts/index.html

4-9

4.2 ARTIFICIAL INTELLIGENCE

The Artificial Intelligence Module consists of 8 lessons that introduce the topic of

artificial intelligence (AI) in computers by surveying several of the major application

domains of AI. These application domains include language processing, visual

processing, game playing, expert systems, and neural networks. The learning objectives

for the module are as follows:

• Understand current applications of AI,

• Recognize the limitations of AI, and

• Compare the human mind to computer intelligence.

Table 4.2 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

Table 4.2 Lessons in the Artificial Intelligence Module

Lessons Interactive Components †

Introduction to AI – discussion of the goal of AI and the
nature of complex tasks

Humans Versus Computers – comparison of the intelligence
of machines and humans

• Humans Versus Computers (F)
• Checkers (J)
• ELIZA (J)

Natural Language Processing – discussion of several
applications of natural language processing

Game Playing – explanation of search trees and their use in
computer game playing • Eight-Puzzle (J)

Visual Processing – discussion of optical character
recognition and handwriting recognition • JRec (J)

Neural Networks – explanation of the basic structure of a
neural network • JRec (J)

Expert Systems – discussion of the general architecture of
expert systems using the example of MYCIN

Summary – review of the main ideas in Artificial
Intelligence

† (F) – Flash animation (J) – Java applet

4-10

4.2.1 Humans Versus Computers Animation

This animation compares the human mind against computer intelligence to

illustrate the strengths and weaknesses of each. The storage capacity, connection

complexity, and data transfer speed of brains and computers are contrasted, and the

animation ends with the observation that “brains still have an edge over computers.”

While the animation is entertaining, it also teaches students to recognize the types of

tasks that are well suited for the human mind and those that are well suited for a

computer. Students control the pace of the animation using the “Replay” and “Continue”

buttons at the bottom of the animation (see Figure 4.8).

continuereplay150

Score

Storage
Capacity

Brain Computer

Connection
Complexity

Data Transfer
Speed

Total

1 0

Figure 4.8 Humans Versus Computers Animation

Link: http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4.2.2 Checkers Applet

This applet allows students to play a game of checkers against their own computer

(see Figure 4.9). The game illustrates a task that is well suited to computers since it can

be modeled by simple numerical procedures. In fact, computers play checkers so well

that a computer named “Chinook” is the current man versus machine champion of the

world. The applet was reused by permission [Fabio 1997] and the interface was

translated from Italian to English. As a result of reusing this applet and several others in

this module, the total development time required for the AI module was significantly less

than the other modules.

http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4-11

Figure 4.9 Checkers Applet

Link: http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4.2.3 ELIZA Applet

This applet allows students to attempt to carry on a conversation with their

computer. Students interact with ELIZA by typing in the text box at the bottom of the

applet (see Figure 4.10). The interaction quickly illustrates that conversation is a task that

is well suited to humans but not computers. This applet makes a good contrast to the

previous Checkers applet which demonstrated one area of AI in which computers are

strong. This applet was reused by permission [Goerlich 1996] and the interface was

modified slightly.

http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4-12

Figure 4.10 Eliza Applet

Link: http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4.2.4 Eight-Puzzle Applet

This applet demonstrates the AI game playing technique of building a search tree

to evaluate possible moves. The applet implements a heuristic that students can turn off

or on when they ask the computer to solve the puzzle. Since the computer must consider

a very large number of possibilities when searching for a solution to the puzzle, the use of

the heuristic makes a noticeable difference. The applet also implements a step counting

feature and a “Same Shuffle” button (see Figure 4.11) so that students can attempt to

solve the puzzle on their own and then instruct the computer to solve the puzzle from the

same initial configuration. In many cases, the computer is likely to discover the optimal

solution and solve the puzzle in fewer steps than the student.

http://courses.cs.vt.edu/csonline/AI/Lessons/HversusC/index.html

4-13

Figure 4.11 Eight-Puzzle Applet

Link: http://courses.cs.vt.edu/csonline/AI/Lessons/GamePlaying/index.html

4.2.5 JRec Applet

This applet illustrates two different areas of AI research: hand writing recognition

and neural networks. The applet implements a simple neural network that can be trained

to recognize various shapes. Once the applet has been trained with two example cases, it

will attempt to identify unknown symbols drawn by the student. The screen shot below

(see Figure 4.12) shows the applet correctly identifying the number four. This applet was

reused by permission [Mitchell 1998] and the interface was modified slightly to

accommodate the layout of the online modules.

http://courses.cs.vt.edu/csonline/AI/Lessons/GamePlaying/index.html

4-14

Figure 4.12 JRec Applet

Link: http://courses.cs.vt.edu/csonline/AI/Lessons/VisualProcessing/index.html

4.3 DATA STRUCTURES

The Data Structures Module consists of 16 lessons that introduce the topic of data

structures by comparing how data is actually stored in a computer with the abstract

structures that programmers use. To illustrate this comparison, several basic data

structures such as lists, stacks, and queues are described as well as some non-linear data

structures such as multidimensional arrays, graphs, and bags. The learning objectives for

the module are as follows:

• Show how data structures map onto physical memory,

• Identify linear versus nonlinear data structures,

• Manipulate data structures with basic operations, and

• Compare different implementations of the same data structure.

Table 4.3 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

http://courses.cs.vt.edu/csonline/AI/Lessons/VisualProcessing/index.html

4-15

Table 4.3 Lessons in the Data Structures Module

Lessons Interactive Components †
Introduction to Data Structures – comparison of a list and

tree data structure
Computer Memory – discussion of computer memory as

linear data cells
Pointers and Indirection – explanation of pointers as one

solution to representing non-linear data structures
Linear Data Structures – discussion of lists and various

ways to view them
Ordered List: The Abstract View – introduction to basic list

operations
Ordered List: The Implementation View – comparison of

array lists and linked lists
• Ordered Arrays (F)
• Ordered Linked List (F)

Stacks: The Abstract View – introduction to basic stack
operations • Abstract Stack (F)

Stacks: The Implementation View – comparison of array
and pointer implementations of stacks

Queues: The Abstract View – introduction to basic queue
operations • Abstract Queue (F)

Queues: The Implementation View – discussion of the
logical and physical representations of queues • Queue (J)

Nonlinear Data Structures – discussion of a tree as a type of
nonlinear data structure

Multidimensional arrays – introduction to higher
dimensional array structures • Two-Dimensional Arrays (F)

Trees – introduction to tree terminology and binary trees

Graphs – introduction to graph terminology and adjacency
matrices • Graphs (F)

Abstract Data Types – comparison of various data structures
and their abstract representations • Bag Abstract Data Type (J)

Summary – review of the main ideas in Data Structures

† (F) – Flash animation (J) – Java applet

4.3.1 Ordered Arrays Animation

This animation illustrates how the operations of the Ordered List data structure

are implemented using a one-dimensional array. The animation instructs students to

manually perform the insertions and deletions of list elements using the mouse (see

Figure 4.13). While performing the operations, students discover some difficulties with

one-dimensional arrays such as limited size and the need to shift many elements to

perform various insertions and deletions.

4-16

Item 200 201 202 203 204 205
OurList

Operation: AddListItem(OurList, 8)

Suppose we need to add a number to the middle of the list. To do this, we must
first shift the numbers higher than our new number to the right. Then we add the
new number in the correct position. Perform this operation by adding the new
number in the item box to the list.

R e s e t

92 4 6 78

Figure 4.13 Ordered Arrays Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/index.html

4.3.2 Ordered Linked List Animation

This animation introduces the concept of the linked list and discusses how it can

be used to implement an ordered list data structure. The animation shows how the add

and remove operations are implemented in a linked list by changing pointers and

contrasts this method with the one-dimensional array implementation presented in the

previous animation (see Figure 4.14). This contrast highlights some of the advantages of

using a linked list to implement an ordered list.

When working with arrays, we discovered two problems. First, we often had to shift many
items to insert a new item in the correct position. Second, the size of our array was limited, so
our list was also limited. The linked list provides a solution to these problems. Let's see how
it works.

continuereplay

200 201 202 203 204 205
2 8764

200 201 275 276 342 343 230 231
2 4 6 8342

103 104
7 230275 103 Null

Figure 4.14 Ordered Linked List Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/index.html

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/index.html
http://courses.cs.vt.edu/csonline/DataStructures/Lessons/OrderedListImplementationView/index.html

4-17

4.3.3 Abstract Stack Animation

This animation simulates the behavior of an abstract stack data structure.

Students can “push” various shapes onto the stack by dragging them with the mouse to

the top of the stack, and they can “pop” the top shape off the stack by dragging it outside

the stack (see Figure 4.15). The animation instructions also ask students to try

performing an illegal operation such as removing an item that is not on the top of the

stack. Since this action is not allowed, the animation helps students gain a feel for the

behavior of stacks.

Try pushing a few items onto the stack and
then popping them off again until you are
familiar with the way the stack data structure
works. Notice that items are always removed
from the stack opposite the order they were
added. Also notice that the last item added to
the stack is always the first item to be
removed.

restart
Stack

Figure 4.15 Abstract Stack Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/StacksAbstractView/index.html

4.3.4 Abstract Queue Animation

This animation simulates the behavior of an abstract queue data structure.

Students can “enqueue” various shapes into the queue by dragging them with the mouse

to the tail of the queue (see Figure 4.16). Similarly, students can “dequeue” the shapes

by dragging them from the head of the queue. The animation instructions also ask

students to try performing an illegal operation such as dequeuing a shape from the middle

of the queue or enqueuing a shape at the head of the queue. Since these actions are not

allowed, the animation helps students gain a feel for the behavior of queues..

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/StacksAbstractView/index.html

4-18

Now try adding an item to the queue by dragging it into the middle of
the queue or the head of the queue. Notice that these operations are
not allowed. Items can only be added to the tail of the queue.

continue

Queue

Head Tail

Figure 4.16 Abstract Queue Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/QueuesAbstractView/index.html

4.3.5 Queue Applet

This applet demonstrates three different views of the queue data structure: an

abstract view of a general queue, a logical representation of a circular queue, and a

physical representation of a circular queue. As students enqueue and dequeue letters, the

applet updates each view to its new state by displaying or removing a letter and shifting

the head and tail references (see Figure 4.17). The applet also allows students to hide the

two implementation views and see only the general queue. In this way, students use the

queue without knowing the underlying implementation. This interaction emphasizes the

separation between a data structure’s implementation and its interface.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/QueuesAbstractView/index.html

4-19

Figure 4.17 Queue Applet

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/QueuesImplementationView/applet.html

4.3.6 Two-Dimensional Arrays Animation

This animation introduces the concept of a two-dimensional array and describes

how such arrays are typically represented in memory. The animation presents a segment

of nine linear memory cells and shows how these are mapped to a 3x3 matrix using row

major order and column major order (see Figure 4.18). Finally, the animation illustrates

one application of the 3x3 array by showing how this data structure can be used to

represent a tic-tac-toe board. As various X’s and O’s appear in the matrix, a

corresponding X or O appears in the representation of linear memory below the matrix.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/QueuesImplementationView/applet.html

4-20

The second approach is called a column major order. With this
approach, we divide the computer's memory into groups of arrays
which represent table columns. Then we organize the columns
into a table by placing them side by side.

.

Physical Representation

Logical Representation

Column 1 Column 2 Column 3Column 3

Column
Major
Order

Figure 4.18 Two-Dimensional Arrays Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/2DArrays/index.html

4.3.7 Graph Animation

This animation introduces the concept of general graphs and shows how they can

be implemented using an adjacency matrix to represent the graph. The animation

simulates graphs varying from two to six vertices in size. Students select the size of the

graph from a drop-down list in the instructions box and then connect various vertices by

clicking on them with the mouse (see Figure 4.19). Adding or removing an edge from

the graph will automatically update the adjacency matrix at the bottom right of the

animation.

A
A

B

B

C

C

D

D

E

E

F

F

Logical Representation
of a Graph

Instructions:
Click on a vertex to select
it. Select two vertices to
draw a new edge between
them or remove an
existing edge. To change
the number of vertices in
the graph, use the list box
below.

Adjacency Matrix

1
1
1

1
1
1

1
1
1
1

1 1 1 1

A

B

C

D

E

F

6 vertices

Figure 4.19 Graph Animation

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/Graphs/index.html

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/2DArrays/index.html
http://courses.cs.vt.edu/csonline/DataStructures/Lessons/Graphs/index.html

4-21

4.3.8 Bag Abstract Data Type Applet

This applet simulates the behavior of a bag data structure using an analogy to a

grocery bag and fruit. Using the buttons on the right side of the applet (see Figure 4.20),

students can perform the following operations on the bag:

• Put an item into the bag,

• Get an item from the bag,

• Ask if the bag is empty,

• Ask if the bag is full,

• Grab a random item from the bag,

• Check if the bag has a certain item,

• Determine the total number of items in the bag, and

• Empty the bag.

The purpose of the applet is to demonstrate the concept of an abstract data type.

Therefore, the applet focuses on the behavior of a bag and not its implementation. The

review questions for this lesson direct students to manipulate the bag using the various

operations and then to describe the effect the operations on the bag.

4-22

Figure 4.20 Bag Applet

Link: http://courses.cs.vt.edu/csonline/DataStructures/Lessons/AbstractDataTypes/index.html

4.4 MACHINE ARCHITECTURE

The Machine Architecture Module consists of 6 lessons that introduce the topic of

machine architecture by explaining data storage in computers, illustrating various gates

and circuits, and discussing the central processing unit and machine code. The learning

objectives for the module are as follows:

• Explain the various ways data is represented in computer memory.

• Reproduce the truth tables for the AND, OR, and NOT gates,

• Trace the logic of circuits composed of a few simple gates,

• Describe the behavior of the following circuits: decoder, latch, and adder, and

• Write simple programs in machine code.

http://courses.cs.vt.edu/csonline/DataStructures/Lessons/AbstractDataTypes/index.html

4-23

Table 4.4 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

Table 4.4 Lessons in the Machine Architecture Module

Lessons Interactive Components †
Introduction to Machine Architecture – discussion of

computers as a universal machine
Data Storage – discussion of bits, floating point numbers,

and computer memory • Data Representation (J)

Gates – introduction to basic gates (AND, OR, NOT) and
truth tables • Simcir (J)

Circuits – introduction to decoders, latches, and adders • Simcir (J)

The Central Processing Unit – discussion of the CPU and
machine language with two simple programs

• Sum Program (F)
• Count Program (F)

Summary – review of the main ideas in Machine
Architecture

† (F) – Flash animation (J) – Java applet

4.4.1 Data Representation Applet

This applet shows students the machine representations of three types of data: 2’s

complement integers, floating point numbers, and ASCII characters. Students select the

type of data they wish to store, enter the value for the data, and then view its machine

representation (see Figure 4.21). The purpose of this applet is to complement the lesson

discussion of data representation.

Figure 4.21 Data Representation Applet

Link: http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/DataStorage/index.html

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/DataStorage/index.html

4-24

4.4.2 Simcir Applet

This applet allows students to build and test simple circuits from a variety of

gates. The applet also allows students to experiment with the behavior of various gates as

they are introduced in the lesson. The screen shot below (see Figure 4.22) shows a 4-bit

decoder in Simcir built from NOT gates and AND gates. Students can interact with the

decoder by using the mouse to change the states of the toggle switches. Students can also

build their own circuits by dragging gates and other components from the tool pallet on

the left and connecting them with mouse clicks. Simcir was reused by permission [Arase

1999] and included in the Machine Architecture module without any modifications.

Figure 4.22 Simcir Applet

Link: http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/Gates/index.html

4.4.3 Latch Animation

This animation simulates the behavior of a simple latch built from two NAND

gates. The latch animation illustrates a circuit that has the ability to remember certain

states. By pressing the “Remember 1” button, the latch will eventually show a 1 on the

output line (see Figure 4.23). The flow of current through the circuit is simulated by red

1’s and 0’s moving along the wires. When a pair of numbers enters one of the gates, the

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/Gates/index.html

4-25

appropriate line of the truth table is highlighted, and a single corresponding number

travels down the output line of the gate. Both buttons act as toggle switches that

momentarily change the value of their output from 1 to 0.

stop

In Out

0 0

0

0

0

1

1

1

11

11

Remember 1

1
1

Output

In Out

0 0

0

0

0

1

1

1

11

11

Remember 0

1

0

1

Figure 4.23 Latch Animation

Link: http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/Circuits/index.html

4.4.4 Sum Program/Count Program Animations

These animations simulate two simple assembly code programs running on a

microprocessor. The microprocessor consists of an instruction register, program counter,

decoder, multiplexer, ALU, accumulator, and 15 memory cells (RAM). These

components are connected by a data bus, an address bus, and a control bus. Students can

view either assembly code or machine code while the animation is running. The Sum

Program animation (see Figure 4.24) loads two numbers from memory, adds them, and

stores the result back into memory. The Count Program animation demonstrates a simple

loop that counts up from zero to five.

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/Circuits/index.html

4-26

+1

0

1

Assembly Code

Machine Code

HALT

STORE 15

ADD 14

LOAD 13

STORE 14

LOAD #5

STORE 13

LOAD #2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2

5

ADD 14

52

+

7

6
IR PC

Decoder MUX

ALU

AC

RAM

Figure 4.24 Sum Program Animation

Link: http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/index.html

4.5 NUMBER SYSTEMS

The Number Systems Module consists of 21 lessons that introduce the topic of

number systems with a focus on binary numbers and binary arithmetic. The module also

includes a brief explanation of octal and hexadecimal numbers. The learning objectives

for the module are as follows:

• Convert between binary and decimal numbers,

• Add, subtract, multiply, and divide binary numbers,

• Represent signed binary numbers with 1’s and 2's complements, and

• Add and subtract signed binary numbers.

Table 4.5 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

All of the interactive components in this module are Flash animations that

illustrate techniques for using binary numbers. These components are divided into three

sections: conversion, binary arithmetic, and complements. Each animation is divided into

logical scenes that correspond to the steps of the mathematical problem being illustrated.

Students can choose to repeat a scene or continue to the next scene using the controls that

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/index.html

4-27

appear at the bottom of the animation (see Figure 4.25). Each animation also includes

narration that explains the steps of the problem as the animation progresses.

continuereplay
Figure 4.25 Animation controls

4.5.1 Conversion

Three animations in this module deal with the topic of converting numbers

between the binary and decimal number systems. Each of these animations illustrates a

particular technique for performing the conversion.

4.5.1.1 Binary to Decimal Conversion Animation

The purpose of this animation is to explain how to convert a binary number to its

decimal equivalent. The animation solves the problem of converting 11101.012 to

29.2510 by writing the binary position values above each digit, converting these to

decimal, and then summing the position values that correspond to a “1” digit in the binary

number. The screen shot below (see Figure 4.26) shows the final step of the conversion

in which the position values are summed.

0
.5

0
2

+

11
1

111
48 .2516

.
16
8
4
1

.25
29.25

Finally, we sum the
values we listed to get
the decimal answer. 16
+ 8 + 4 + 1 + 0.25 =
29.25

Figure 4.26 Binary to Decimal Conversion Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/BinaryToDecimalConversion/index.html

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/BinaryToDecimalConversion/index.html

4-28

Table 4.5 Lessons in the Number Systems Module

Lessons Interactive Components †
Introduction to Binary Numbers – discussion of the

relevance of binary numbers to digital computers
Understanding Number Systems – illustration of the decimal

number system
Binary to Decimal Conversion – illustration of converting

binary numbers to decimal • Binary to Decimal Conversion (F)

Decimal to Binary Conversion – illustration of converting
decimal numbers to binary • Decimal to Binary Conversion (F)

Converting Fractions – illustration of converting binary
fractions to decimal • Conversion with Fractions (F)

Binary Arithmetic – comparison of binary and decimal
arithmetic

Binary Addition – discussion of four basic rules of binary
addition

Adding Two Binary Numbers – illustration of binary
addition • Adding Two Binary Numbers (F)

Adding Multiple Binary Numbers – illustration of adding a
column of binary numbers • Adding Multiple Binary Numbers (F)

Adding Binary Fractions – illustration of adding binary
numbers with fractions

Binary Subtraction – discussion and illustration of the four
basic rules of binary subtraction • Binary Subtraction (F)

Binary Multiplication – discussion and illustration of binary
multiplication • Binary Multiplication (F)

Binary Division – discussion and illustration of binary
division • Binary Division (F)

Signed numbers – discussion of signed magnitude
representation for binary numbers

One's complement – explanation of one’s complement

Two's complement – explanation of two’s complement

Subtraction with Signed Numbers – introduction to
subtracting signed numbers

Subtraction with One's complement – illustration of
subtraction with one’s complement Subtraction with One’s Complement (F)

Subtraction with Two's complement – illustration of
subtraction with two’s complement Subtraction with Two’s Complement (F)

Hexadecimal and Octal Numbers – application of number
system principles to hexadecimal and octal numbers

Comparing Number Systems – converting between binary,
octal, and hexadecimal numbers

Summary – review of the main ideas in the Number Systems

† (F) – Flash animation (J) – Java applet

4-29

4.5.1.2 Decimal to Binary Conversion Animation

The purpose of this animation is to explain how to convert a decimal number to

its binary equivalent. The animation solves the problem of converting 1110 to 10112 by

the method of repeated division. After each division by two, the remainder is moved to

the bottom of the animation to form the final answer. The screen shot below (see Figure

4.27) shows the first division in the conversion.

11

Answer: _ _ _ _

÷ 2 = 5 R 1

1

First, we divide 11 by
2 to find the least
significant digit.
Since 1 is our
remainder, the least
significant digit in
our answer is "1".

Figure 4.27 Decimal to Binary Conversion Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/DecimalToBinaryConversion/index.html

4.5.1.3 Decimal to Binary Conversion with Fractions

The purpose of this animation is to explain how to convert a decimal fraction to

its binary equivalent. The animation solves the problem of converting 0.03510 to 0.0112

by the method of repeated multiplication. After each multiplication by two, the most

significant digit is moved to the bottom of the animation to form the final answer. The

screen shot below (see Figure 4.28) shows the second multiplication in the conversion.

.375

Answer: 0 . _ _ _

× 2 = 0 .750

0

× 2 = 1 .500

1

Next, we take the
fractional part of our
previous result and
multiply by 2 again.
Now the result is
greater than 1, so the
next digit of our
answer is "1".

.750

Figure 4.28 Decimal to Binary Conversion with Fractions Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/

Lessons/DecimalToBinaryConversionWithFractions/index.html

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/DecimalToBinaryConversion/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/DecimalToBinaryConversionWithFractions/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/DecimalToBinaryConversionWithFractions/index.html

4-30

4.5.2 Binary Arithmetic

Five animations in this module deal with the topic of binary arithmetic. These

cover the four main arithmetic operations: addition, subtraction, multiplication, and

division. Since the concept of carries is often confusing to students learning binary

addition, one animation is devoted to illustrating how this is done when adding multiple

binary numbers.

4.5.2.1 Adding Two Binary Numbers Animation

This animation shows how to add the numbers 1102 and 11112 using the four

basic rules of binary addition. These rules are discussed in the lesson text before the

animation. Notice in the scene shot below (see Figure 4.29) that cueing is used to direct

the student’s attention by graying out parts of the problem that are not immediately

relevant.

+
0
0

1
0
1

1
1
0

1
1
1
10

0
1
1

1

The two ones in
the fourth column
add to "10", so we
carry a one to the
final column, and
write zero below
this column.

Figure 4.29 Adding Two Binary Numbers Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/AddingTwoBinaryNumbers/index.html

4.5.2.2 Adding Multiple Binary Numbers Animation

This animation teaches a technique for adding multiple binary numbers by

showing students how to add 1112, 1102, 11012, 1012, and 11102 together. When adding

many binary numbers, students need to keep track of the number of carries to mark in the

next column. The animation shows them how this can be done by crossing out pairs of

ones in the current column and marking a carry for each pair in the adjacent column. The

screen shot below (see Figure 4.30) shows this technique.

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/AddingTwoBinaryNumbers/index.html

4-31

+
1
1

1
0

0
1

1

1

1
1
0
0

0

1
1
1
1
1
1

1
1

1
1
11

1

1

0
0

0

0
0
0
0
0

Adding the fourth
column generates
two carries. Since
there is no fifth
column, we will
create one with all
zeros, and mark the
carries above it.
Next we write the
unpaired "1" below
the fourth column.

Figure 4.30 Adding Multiple Binary Numbers Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/AddingMultipleBinaryNumbers/index.html

4.5.2.3 Binary Subtraction Animation

This animation shows how to subtract the number 10112 from 11112 using the

four basic rules of binary subtraction. These rules define what is generally thought of as

the Borrow Method for subtraction. The rules are discussed in the lesson text before the

animation. The screen shot below (see Figure 4.31) shows a borrow from the left-most

column in order to complete the subtraction in the middle column.

− 0 1
1
0
1

1
0

1
1

1
1

0
1

01
1
1

Now we subtract the next
column. Since we borrowed
from this column, the
subtraction is "0" minus "1",
and we must borrow again.
However, our next column
has no "1" for us to borrow.
So, we must borrow from the
last column, and then borrow
a "1" from the fourth column
into our current column. We
perform the subtraction for
the current column, and write
our answer below.

Figure 4.31 Binary Subtraction Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Subtraction/index.html

4.5.2.4 Binary Multiplication Animation

This animation shows how to multiply the numbers 11112 and 10112. Since

multiplication is really just repeated addition, this animation builds on the technique

introduced in the Adding Multiple Binary Numbers animation. The screen shot below

(see Figure 4.32) shows how a zero multiplier digit results in a row of zeros.

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/AddingMultipleBinaryNumbers/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Subtraction/index.html

4-32

111 0×
1 1 1 1

1 1 1 1
1 1 1 1 0

00

Now we multiply the
next digit. Since this
is the third
multiplication, we
record two zeros in the
answer. Notice that
the third digit is "0".
Since any number
multiplied by zero is
zero, we place a row
of zeros as our answer.

Figure 4.32 Binary Multiplication Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Multiplication/index.html

4.5.2.5 Binary Division Animation

This animation shows how to divide the number 10002 by 1102 using the method

of long division. Since division is really just repeated subtraction, this animation builds

on the Borrow Method technique introduced in the Binary Subtraction animation. The

screen shot below (see Figure 4.33) shows the completed long division problem.

1 1 0 1 00 0
1 0

10
1

1 1

.

.
0
1

0
1 1 0−

− 1 1 0
1 0 0 1

− 1 1 0
0

Now we bring down the
extra zero and compare
the remainder with our
divisor. Notice we
ignore the radix point in
our comparison. "110"
equals "110" so we write
another "1" in the
quotient and subtract.
This completes our
division because we have
no more digits in the
dividend and no
remainder.

Figure 4.33 Binary Division Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Division/index.html

4.5.3 Complements

Two animations in this module deal with the topic of complements. These

animations illustrate how complements are used to perform binary subtraction in

microprocessors.

4.5.3.1 Binary Subtraction with 1’s Complement Animation

This animation illustrates how to subtract binary numbers by converting the

numbers to 1's complement representation and adding them. The animation uses the

example problem of subtracting the number 10012 from 11012. As the animation

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Multiplication/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/Division/index.html

4-33

progresses, the decimal values are displayed to the right side of the problem (see Figure

4.34). This allows students to see how subtraction with complements is similar to adding

negative numbers in decimal.

0 1 1 10 =
=

13
111 00 −9+

110001

Next, we add the
negative value we
computed to "01101".
This gives us a result
of "100011".

Figure 4.34 Binary Subtraction with 1's Complement Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/

Lessons/SubtractionWithOnesComplement/index.html

4.5.3.2 Binary Subtraction with 2’s Complement Animation

This animation illustrates how to subtract binary numbers by converting the

numbers to 2's complement representation and adding them. The animation uses the

same example problem as the animation above so that students can contrast the 1’s

complement and 2’s complement techniques. The screen shot below (see Figure 4.35)

shows how the 2’s complement number is formed.

1 1 1
1 1

0
0

0
0 0−

=
=

13
9

111 00
+

11101
10000

First, we need to convert
"01001" to its negative
equivalent in 2's
complement. To do this we
change all the "1"s to "0"s
and vice versa. Then we
add "1" to the number to
obtain our negative
equivalent. Notice that the
most significant digit is
now "1" since the number is
negative.

Figure 4.35 Binary Subtraction with 2's Complement Animation

Link: http://courses.cs.vt.edu/csonline/NumberSystems/

Lessons/SubtractionWithTwosComplement/index.html

4.6 OPERATING SYSTEMS

The Operating Systems Module consists of 9 lessons that introduce this topic by

discussing the main function of operating systems and investigating several key parts of

operating systems such as memory and file managers. The learning objectives for the

module are as follows:

http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/SubtractionWithOnesComplement/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/SubtractionWithOnesComplement/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/SubtractionWithTwosComplement/index.html
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/SubtractionWithTwosComplement/index.html

4-34

• Understand the purpose of the operating system,

• Distinguish between a resource, a program, and a process,

• Recognize critical resources and explain the behavior of semaphores,

• Describe various memory page replacement algorithms, and

• Describe how files are stored in secondary storage

Table 4.6 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

Table 4.6 Lessons in the Operating Systems Module

Lessons Interactive Components †
Introduction to Operating Systems – discussion of various

types of operating systems
Resources – discussion of the problem of resource allocation

in computers • Nursery Game (J)

Processes – introduction to processes and process scheduling • Process State Diagram (F)
• Process Scheduling Simulation (J)

Synchronization – definition and illustration of critical
resources and sharing

• Mutex Demonstration (J)
• Bounded Buffer Demonstration (J)

Deadlock – discussion of the conditions that must exist for
deadlock to occur • Dining Philosophers (J)

Memory Allocation – discussion of best fit, worst fit, and
first fit memory allocation strategies • Memory Allocation (J)

Virtual Memory – discussion of five virtual memory paging
policies

• Virtual Memory Simulation (J)
• Simulation of Page Replacement (J)

File Management – discussion of contiguous, linked, and
indexed allocation methods • File System Allocation (J)

Summary – review of the main ideas in Operating Systems

† (F) – Flash animation (J) – Java applet

4.6.1 Nursery Game Applet

This animation demonstrates the allocation of limited computer resources to

processes in an operating system. To do this, it draws an analogy between an operating

system full of processes and a nursery full of babies (see Figure 4.36). In the applet,

babies represent processes while nurses, toys, and blankets represent resources. The

students themselves represent the operating system which must allocate resources to the

babies with the goal of maximizing the number of babies who are happy. Babies who are

unhappy signal their distress by crying and requesting a certain resource (i.e., a blanket,

4-35

toy, or nurse) which is indicated by a blinking red light. Students must then allocate the

desired resource to the baby to appease him. Since resources are limited, students cannot

always keep the nursery quiet. The intention of this applet is to give the students some

idea of how difficult resource allocation can be when resources are limited.

Figure 4.36 Nursery Game Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Resources/index.html

4.6.2 Process State Diagram

This animation demonstrates the classic Ready-Running-Waiting process state

diagram. It shows how processes transition from one state to another throughout their

life cycle and includes the role of the operating system in overseeing these transitions.

The animation controls at the bottom right corner allow students to pause or step through

the simulation (see Figure 4.37).

http://courses.cs.vt.edu/csonline/OS/Lessons/Resources/index.html

4-36

scheduler dispatch

interrupt exitadmitted

I/O or event
wait

I/O or event
completion

New

Ready Running

Terminated

Waiting stopstep restart

Current process
blocked on I/O

or an event.

OS

Figure 4.37 Process State Diagram Animation

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html

4.6.3 Process Scheduling Simulation Applet

This applet allows students to enter the name, arrival time, and service time of

various processes and choose a scheduling algorithm. The applet then runs the processes

using that algorithm, plots the running time for each process (see Figure 4.38), and

displays a table of statistics with the arrival time, service time, finish time, and

turnaround time for each process. The scheduling algorithms are First Come First Serve,

Round Robin, and Shortest Process Next. This applet was reused with permission [Tran

1998] and included in this module with some modifications to the interface.

Figure 4.38 Process Scheduling Simulation Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html

http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html
http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html

4-37

4.6.4 Mutex Demonstration Applet

This applet demonstrates how a semaphore is used in an operating system to

prevent multiple processes from accessing a critical section simultaneously. Processes

are represented by blue disks that slowly paint themselves on the screen in a counter-

clockwise fashion. Each process has a light blue critical section that it does not enter

unless Mutex is “1” (see Figure 4.39). When any process is in its critical section, Mutex

is set to “0” and all other processes block upon reaching their critical sections. When a

process exits its critical section, Mutex is set to “1” again and the next process can

unblock and enter its critical section. Note that Mutex must initially be set to “1” or none

of the processes can enter their critical section. While the simulation is running, students

can pause or run each process and adjust the size of a process’s critical section. This

applet was reused with permission [Magee and Kramer 1999] and included without

modification in this module.

Figure 4.39 Mutex Demonstration Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Synchronization/index.html

4.6.5 Bounded Buffer Demonstration Applet

This applet demonstrates synchronization in the classic Bounded Buffer problem.

Processes are again represented by animated disks (see Figure 4.40). The producer

process adds one letter to the center buffer with each revolution, and the consumer

process removes one letter with each revolution. The producer blocks if the buffer

becomes full, and the consumer blocks if the buffer becomes empty. Students can run

and pause both processes to observe the behavior of the system. This applet was reused

http://courses.cs.vt.edu/csonline/OS/Lessons/Synchronization/index.html

4-38

with permission [Magee and Kramer 1999] and included without modification in this

module.

Figure 4.40 Bounded Buffer Demonstration Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Synchronization/index.html

4.6.6 Dining Philosophers Applet

This applet demonstrates the problem of deadlock with the classic Dining

Philosopher problem. The five smiley faces represent the philosophers and the five black

dots represent forks (see Figure 4.41). Each philosopher must have two forks to begin

eating, and they only take forks to their immediate left or right. When each philosopher

has exactly one fork, the system deadlocks since they are all waiting for another fork.

The applet operates in two modes. The first mode uses a naïve allocation method that is

susceptible to deadlock. The second mode uses a deadlock avoidance method by

dictating how some of the philosophers may take their forks. This applet was reused with

permission [Magee and Kramer 1999] and included without modification in this module.

http://courses.cs.vt.edu/csonline/OS/Lessons/Synchronization/index.html

4-39

Figure 4.41 Dining Philosophers Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/Deadlock/index.html

4.6.7 Memory Allocation Applet

This applet demonstrates three memory allocation strategies: best fit, worst fit,

and first fit. Students begin the simulation by setting the size of the simulation memory

and the number of processes in the operating system. The applet then has each process

make memory requests and uses the three allocation strategies to manage the memory in

the system. Each strategy is represented as a green column that corresponds to main

memory. Active processes are shown as light blue bands (see Figure 4.42). This

representation is particularly helpful for highlighting the problems associated with

memory fragmentation. The applet was reused by permission [Gokey 1997] and included

in this module with some minor interface changes.

http://courses.cs.vt.edu/csonline/OS/Lessons/Deadlock/index.html

4-40

Figure 4.42 Memory Allocation Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/MemoryAllocation/index.html

4.6.8 Virtual Memory Simulation Applet

This applet displays an animated simulation of processes requesting pages in

memory. The eight rectangles in the middle of the applet represent the physical memory

pages, and the sixteen rectangles on the left represent the virtual memory pages (see

Figure 4.43). Since the physical memory is limited, pages must be swapped to virtual

memory when a process requests a page that is not currently loaded. Physical memory

pages are connected by lines to their locations in virtual memory. When a process’s

memory request causes a page fault, the process is displayed in red, and the appropriate

virtual memory page is loaded. The applet was reused with permission [Coutinho 1996]

and included with some minor modifications to the interface.

http://courses.cs.vt.edu/csonline/OS/Lessons/MemoryAllocation/index.html

4-41

Figure 4.43 Virtual Memory Simulation Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/VirtualMemory/index.html

4.6.9 Simulation of Page Replacement Algorithms Applet

This applet simulates the performance of five virtual memory page replacement

algorithms: First Come First Serve, Least Recently Used, Least Frequently Used, Second

Chance, and Random. Students can specify the order of page references via an input

string or allow the applet to randomly choose pages. During the simulation, the applet

calculates the number of page faults and the page fault rate for each algorithm (see Figure

4.44). The applet was reused by permission [Song 1997] and included in this module

with minor modifications.

http://courses.cs.vt.edu/csonline/OS/Lessons/VirtualMemory/index.html

4-42

Figure 4.44 Simulation of Page Replacement Algorithms Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/VirtualMemory/index.html

4.6.10 File System Allocation Applets

These three applets illustrate three methods for allocating blocks in a file system:

the contiguous method, the linked method, and the indexed method. The applets display

the free list, file allocation table, and hard disk sectors graphically so that students can

visualize the file allocation process (see Figure 4.45). Through the applets’ interfaces,

students can allocate and deallocate files, view a directory list of the current files, or reset

the applet. These applets were reused by permission [Moosani 1998] and included in this

module with various modifications and corrections.

http://courses.cs.vt.edu/csonline/OS/Lessons/VirtualMemory/index.html

4-43

Figure 4.45 File System Allocation Applet

Link: http://courses.cs.vt.edu/csonline/OS/Lessons/FileManagement/index.html

4.7 PROGRAMMING LANGUAGES

The Programming Languages Module consists of 14 lessons that introduce the

topic of programming languages by discussing five important concepts in procedural

languages: identifiers, expressions, control structures, input/output, and abstraction. The

final lesson illustrates these concepts with an example program implementing the

Selection Sort algorithm. The learning objectives for the module are as follows:

• Identify appropriate control structures,

• Use subroutines to organize programs,

• Trace the execution of simple programs, and

• Write simple programs in pseudocode.

Table 4.7 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

http://courses.cs.vt.edu/csonline/OS/Lessons/FileManagement/index.html

4-44

Table 4.7 Lessons in the Programming Languages Module

Lessons Interactive Components †
Introduction to Programming Languages – discussion of

the evolution of procedural programming languages • Code Representations (F)

Identifiers – definition of identifiers, variables, and constants

Assignment – introduction to the assignment operation and
its syntax

• Variables and Assignment (F)
• Simple Assignment Machine (J)

Expressions – definition and illustration of expressions

Boolean Expressions – illustration of Boolean operators and
truth tables

Data Types – comparison of five primitive data types • Data Types Animation (F)

Control Structures – introduction to program flow of control
and four control structures

Selection – introduction to case logic and simple programs
with conditionals • Selection Exercises (F)

Loops – introduction to loop logic and a simple loop
program • Loops Demonstration (F)

Subprograms – definition and illustration of procedures and
functions

• Call Power (F)
• Trace Power (F)

Parameters – comparison of pass-by-reference and pass-by-
value parameters

• Trace Power (F)
• Parameter Passing (F)

Input/Output – discussion of user input/output and file
input/output

Programs – illustration of a procedural program using
Selection Sort • Selection Sort (J)

Summary – review of the main ideas in Programming
Languages

† (F) – Flash animation (J) – Java applet

4.7.1 Code Representations Animation

This animation displays the plain English, pseudocode, assembly code, and

machine code representations of the Simple Tax Program, a basic program to calculate

sales tax. By clicking on the left column of buttons (see Figure 4.46), students can flip

through the different representations of the program and compare them.

4-45

A Simple Tax Program

Click the labels on the left to view the various representations of this program.

Plain
English

Pseudo
Code

Assembly
Code

Machine
Code

LOAD Price
MULT TAXRATE
STOR SalesTax
LOAD Price
ADD SalesTax
STOR Total

Figure 4.46 Code Representations Animation

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Introduction/index.html

4.7.2 Variables and Assignment Animation

This animation illustrates how variable names are associated with memory

locations in a computer. It also uses the Simple Tax Program presented in the previous

animation to demonstrate how statements in a procedural programming language cause

values to be assigned to memory cells and cause those values to change. The screen shot

below (see Figure 4.47) shows a cross section of computer memory along with the

Simple Tax Program. As each statement of the program is executed, the values assigned

to various identifiers appear in the designated memory locations.

.

200 201 202 203

SalesTax Price Total TAXRATE

:= *

+:=

0.04519.95

We assign the value0.045 to the identifierTAXRATE to represent
the 4.5% sales tax. Next we assignPrice the value 19.95 to
represent $19.95, the cost of our purchase. Now we compute the
4.5% sales tax and assign the result to the variableSalesTax.
Then we compute the total cost by addingSalesTax and Price
and assigning the result to the variableTotal.

TAXRATE := 0.045

SalesTax Price TAXRATE

Total Price SalesTax

0.045

Price := 19.95

19.95

Figure 4.47 Variables and Assignment Animation

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Assignment/index.html

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Introduction/index.html
http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Assignment/index.html

4-46

4.7.3 Simple Assignment Machine Applet

This applet allows students to construct simple programs consisting of assignment

statements and basic mathematical operations. Students can create both variables and

constants and watch the values of the variables change in memory as each statement

executes. By working through the five accompanying exercises, students learn the

appropriate use of variables and constants, the value of using named constants, how

assignment statements are constructed, and how these statements work to modify

variables. The first exercise (see Figure 4.48) requires students to code the Simple Tax

Program that they have seen in the previous lessons.

Figure 4.48 Simple Assignment Machine Applet

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Questions/Assignment/applet.html

4.7.4 Data Types Animation

This animation describes five primitive data types that are found in procedural

programming languages: integers, reals, characters, Booleans, and arrays. Each type

corresponds to one scene in the animation. Students view the scenes by clicking on one

of the data type buttons at the bottom of the animation (see Figure 4.49). In addition to

providing a brief explanation of each type, each scene also gives example values of the

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Questions/Assignment/applet.html

4-47

type, a pseudocode declaration for the type, and some example operations that can be

performed on the type.

CharactersRealsIntegers Booleans Arrays

Example Values:

Declaration:

Example Operations:

Arrays are groups of adjacent memory cells
that have the same data type. For example,
an array of characters could be used to hold
a word like "apple". With another data type
like real, an array could be used to store the
exam scores of a class. To specify that an
identifier is associated with an array of
variables, brackets are placed after the
identifier name. Inside the brackets, the size
of the array is given. To create an array of
five characters namedaWord, the identifier
is followed by the number five enclosed in
brackets. Individual variables in an array
can be accessed by specifiying the location
of the variable as a number. For example,
the letter 'l' in "apple" can be assigned to a
new character variable by specifying the
fourth element in the arrayaWord.

Arrays

a p p l e , 87.4 92.1 67.5 82.9

Character aWord[5]

Character myChar := aWord[4]

Figure 4.49 Data Types Animation

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/DataTypes/index.html

4.7.5 Selection Exercises

These animations test for understanding of conditional logic in the form of if-else

clauses. Each animation consists of a set of light bulbs and switches that are interrelated

by some unknown logic (see Figure 4.50). Students must experiment with the system by

changing the position of the switches on the left side and testing each new state to

determine the relationship between the switch positions and the flow of electricity to the

light bulbs. Students can check their answers by filling in a JavaScript form below the

animation. They may also elect to give up and request the correct answer or continue to

the next exercise.

ON ON

Switch 1 Switch 2

R e s e t

Figure 4.50 Selection Exercises

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Selection/index.html

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/DataTypes/index.html
http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Selection/index.html

4-48

4.7.6 Loops Demonstration Animation

This animation demonstrates how the loop construct works in procedural

programming languages. The animation traces through a program designed to compute

the average of a list of five grades. The left side of the animation displays the program in

pseudocode with a blue bar indicating the line that is currently executing (see Figure

4.51). The current value of each identifier is displayed above the blue bar. The right side

shows the variables and constants used in the program. As the animation progresses,

these values change according to the program execution on the left. Students can step

through the program or execute it entirely by using the controls at the bottom of the

animation.

stop restartstep

94.263.7 77.985.0 74.6
1 2 3 4 5

grade

sum avgGrade

Code Data

STUDENTS

5
count

0

3

242.9

Integer STUDENTS := 5

Integer count := 1

Real sum := 0

Real avgGrade := 0

While (count <= STUDENTS)

sum := sum + grade[count]

count := count + 1

EndWhile

avgGrade := sum / STUDENTS

394.2148.7242.9

Figure 4.51 Loops Demonstration Animation

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Loops/index.html

4.7.7 Call/Trace Power Animations

These animations present the concept of a subprogram as an abstract “black box”

that performs a particular function. In this case, the black box is called “Power” and

performs exponentiation. In the Call Power animation, a student enters x and y values

and presses the “Call Power” button to begin the calculation (see Figure 4.52). However,

the student never sees the implementation of the function. Instead, the x and y values

simply enter the left side of the black box and the correct answer exits the right side. In

the Trace Power animation, the student follows the x and y values inside the black box

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Loops/index.html

4-49

and traces the actual code that performs exponentiation. This trace is similar to the one

found in the Loops Demonstration animation above.

x:

y:

returned

Call Power

2

3
Power

Code Data
Function Power(

Parameter in Integer x,

Parameter in Integer y)

returns Integer

Integer answer := 1

Integer i := 0

While (i < y)

answer := answer * x

i := i + 1

EndWhile

return answer

EndFunction

x y

3 2

answer

1
i

0

stopstep

Figure 4.52 Call/Trace Power Animations

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Subprograms/index.html

4.7.8 Parameter Passing Animation

This animation illustrates the differences between the pass-by-reference and pass-

by-value methods of passing parameters to a subprogram. During the animation two calls

are made to a subprogram called Swap (see Figure 4.53). The subprogram takes two

parameters and exchanges the values of these parameters. The first call to the

subprogram shows that passing parameters by reference results in the expected behavior.

The second call to the subprogram shows that passing parameters by value will not

exchange the original values even though the Swap subprogram executes.

Program Subprogram
Integer a := 2

Integer b := 5

Call Swap(a,b)

Procedure Swap(

Parameter in Integer x,

Parameter in Integer y)

Integer temp := x

x := y

y := temp

EndProcedure

Data

a b

52
x

5
y

5
temp

2

Our second version of Swap uses pass-by-value for the parameters. When the call to
the procedure is made, the Swap parameters are given their own copy of the value
stored in the procedure call variables. Now we have multiple copies of the same
value, not the same memory location. All the assignments that take place during the
execution of Swap are invisible to the calling program since this program has no way
of accessing the new memory locations. When the Swap procedure completes, the
variables used in the procedure call still have the same value.

Figure 4.53 Parameter Passing Animation

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Parameters/index.html

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Subprograms/index.html
http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Parameters/index.html

4-50

4.7.9 Selection Sort Applet

This applet allows students to step through the entire Selection Sort program and

watch the values of the program variables change in memory as it executes. The main

window of the applet displays the program code with the current line of code highlighted

(see Figure 4.54). Students can enter up to 10 numbers for the applet to sort. This is

done through a dialog box that appears when the program trace reaches the line of code

for input. During the trace, the Variables window shows the current values of all the

program variables and highlights values accessed by the current line of code. The

Numbers window represents the array of numbers to be sorted. As the sort progresses,

students can watch these numbers shift till the array reaches its final sorted order.

Figure 4.54 Selection Sort Applet

Link: http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Programs/index.html

4.8 SOFTWARE ENGINEERING

The Software Engineering Module consists of 10 lessons that introduce the topic

of software engineering by comparing two important models of the software life cycle,

the Waterfall Model and the Spiral Model, and two paradigms for designing software, the

http://courses.cs.vt.edu/csonline/ProgrammingLanguages/Lessons/Programs/index.html

4-51

Procedural Paradigm and the Object-Oriented Paradigm (OOP). The learning objectives

for the module are as follows:

• Recognize the challenge of writing correct software,

• Understand and reproduce the phases of the software life cycle,

• Compare the procedural paradigm with the OOP, and

• Understand the principles of the OOP.

Table 4.8 lists each of the lessons in this module and briefly describes the content of each

lesson. The right column of the table indicates any interactive components that are

embedded in the lesson.

Table 4.8 Lessons in the Software Engineering Module

Lessons Interactive Components †
Introduction to Software Engineering – illustration of the

current challenges to Software Engineering • Software Engineering Quiz (J)

Software Life Cycle Models – discussion of the six processes
in the software life cycle

The Waterfall Model – explanation of this model as a series
of processes and products

• Waterfall Model (F)
• Waterfall Model Quiz (F)

The Spiral Model – explanation of this model as a risk-
driven, prototyping development approach • Spiral Model (F)

Software Quality Characteristics – discussion of six
important software quality characteristics

Procedural Paradigm – discussion of the main
characteristics of the procedural paradigm • Selection Sort (J)

Object Oriented Paradigm – introduction to objects,
messages, and encapsulation

• Queue (J)
• Bag Abstract Data Type (J)

Classes and Inheritance – introduction to classes,
instantiation, and inheritance • Inheritance (F)

Comparison of Paradigms – assessment of paradigms
according to six software quality characteristics

Summary – review of the main ideas in Software
Engineering

† (F) – Flash animation (J) – Java applet

4.8.1 Software Engineering Quiz Applet

This applet tests students’ knowledge of some surprising software engineering

facts by asking a series of nine questions. Many of the answers are unintuitive and

highlight the current challenges in software engineering. For each question, students can

4-52

select from four possible answers using the mouse and submit their answer by clicking

the button at the bottom of the applet (see Figure 4.55).

Figure 4.55 Software Engineering Quiz Applet

Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Introduction/index.html

4.8.2 Waterfall Model Animation

This animation explains the various processes of the Waterfall Model, the classic

software life cycle model. After a brief introductory sequence in which the meaning of

the various parts of the Waterfall Model diagram are explained, students can click on a

process to view a scene that explains how that process works. The screen shot below (see

Figure 4.56) shows the scene that explains the details of the programming process.

Students may also choose to view all the scenes explaining the Waterfall model in

sequence. The animation emphasizes the iterative nature and product-driven approach of

the Waterfall Model.

http://courses.cs.vt.edu/csonline/SE/Lessons/Introduction/index.html

4-53

Design
Specification

V & V Executable
Software
Modules

V & VProgramming

1 6

34 52

4 32 95 0 17

Button

start

b or c

d or e
prompt

test check

database

SQL script

Main Points:
1. To manage complexity, software is decomposed into
2. Proper management is critical to coordinate development of modules.

Figure 4.56 Waterfall Model Animation

Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Waterfall/index.html

4.8.3 Waterfall Model Review Quiz

This animation allows students to test their knowledge of the Waterfall Model by

labeling a skeleton diagram of the model (see Figure 4.57). Students use the mouse to

drag labels to the correct location on the diagram. Using the “Check Answers” button,

students can then test their answers to see if they correctly labeled the diagram or if some

of the labels are out of place.

Software Development Life Cycle
Waterfall Model

Next Label

Check AnswersChanged
Requirements

Communicated
Requirements

Executable
Software
Modules

Integrated
Software
Product

Maintenance

Product

Productoutput

Programming

Requirements
Specification

V & V

V & V

V & V

V & V

Sorry, you have 15 misplaced label(s).

Figure 4.57 Waterfall Model Review Quiz

Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Waterfall/index.html

http://courses.cs.vt.edu/csonline/SE/Lessons/Waterfall/index.html
http://courses.cs.vt.edu/csonline/SE/Lessons/Waterfall/index.html

4-54

4.8.4 The Spiral Model Animation

This animation explains the underlying concepts of the Spiral Model life cycle.

The animation begins by describing the four steps that make up a single loop of the

spiral. With each consecutive loop, these steps are repeated resulting in new prototypes

and repeated project risk assessment. The screen shot below (see Figure 4.58)shows

several prototypes that result from development loops in the spiral. The last scene of the

animation shows how the final steps of the Spiral Model correspond to the final three

processes of the Waterfall Model: programming, integration, and delivery.
Cumulative Cost

Review
Commitment

partition

Progress
through
steps

PrototypePrototypePrototype1 2 3PrototypePrototypePrototype

Operational
prototype

1 2 3

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

Software Software Prototype
Software Prototype

File Edit Image Help

Software
P

Figure 4.58 Spiral Model Animation

Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Spiral/index.html

4.8.5 Selection Sort Applet

This applet is the same as the one described in the preceding section on

Programming Languages. The applet is included in this module to illustrate one of the

primary characteristics of software designed with the procedural paradigm: sequential

logic. Students are asked to trace the logic of the Selection Sort through its various

routines using the applet.
Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Procedural/index.html

4.8.6 Abstract Data Type Applets

These two applets are the Queue Applet and the Bag Applet that were described

in the Data Structures section. They are included in this module to show how objects can

http://courses.cs.vt.edu/csonline/SE/Lessons/Spiral/index.html
http://courses.cs.vt.edu/csonline/SE/Lessons/Procedural/index.html

4-55

be viewed as abstract data types that support encapsulation and provide a public interface

for performing operations.
Link: http://courses.cs.vt.edu/csonline/SE/Lessons/OOP/index.html

4.8.7 Inheritance Animation

This animation explains the concept of inheritance among classes in the Object-

Oriented Paradigm. The animation considers the problem of modeling shapes in a

drawing program and shows how various types of shape objects can be organized into an

inheritance hierarchy based on their shared characteristics. The screen shot below (see

Figure 4.59) shows the inheritance hierarchy and attributes for various shapes.

Figure

location
line color

Open Figure

area
fill color

Closed Figure

area
fill color

length

location
line color

location
line color

Line

length
location
line color

Ellipse

eccentricity

Polygon

number of sides
area
fill color
location
line color

area
fill color
location
line color

Circle

radius

eccentricity
area
fill color
location
line color

Figure 4.59 Inheritance Animation

Link: http://courses.cs.vt.edu/csonline/SE/Lessons/Classes/index.html

http://courses.cs.vt.edu/csonline/SE/Lessons/OOP/index.html
http://courses.cs.vt.edu/csonline/SE/Lessons/Classes/index.html

5-1

5 CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

5.1 CONCLUSIONS

In conclusion, we would like to say a word about the goal of this project to

improve the effectiveness of learning. Although the project did not include a formal

assessment of the online modules, we believe the material does improve the effectiveness

of learning for the following three reasons: (1) accessibility of materials, (2) level of

student engagement, (3) informal student responses.

The first reason we believe the modules improve the effectiveness of learning is

their accessibility. Since the eight learning modules are always accessible to students via

the WWW, they can review information and learn at their own pace outside of class.

Consider the problem of teaching binary arithmetic. During a lecture session, the

professor has a limited amount of time in which to explain and illustrate the rules of

binary arithmetic. Our experience shows that many students will not understand the

example problems that the professor works in class. Often these students will ask for the

problem to be repeated, a request that may not be practical given the time constrains. The

module on binary arithmetic provides a practical solution to this problem. This module

includes five animations illustrating the rules of binary arithmetic, and each animation is

divided into logical sections that the student can repeat. Thus, what was unreasonable in

class is now very reasonable through animation technology.

The second reason we believe the modules improve the effectiveness of learning

is the opportunity for greater student engagement during study. Many of the lessons in

the modules present the material with interactive components that are more engaging than

traditional textbook reading. In the introduction, we cited the example of the ELIZA

applet and its contribution to understanding artificial intelligence in computers. In

addition to this, the AI module also includes an eight-puzzle applet, a checkers applet,

and a handwriting recognition applet. As students interact with these applets, they

develop their own intuition about the meaning of artificial intelligence. They also

encounter unanswered questions that can become the motivation for further inquiry. For

5-2

example, Figure 5.1 below shows the results of three attempts to recognize the numbers

“6” and “1” using the handwriting recognition applet. Clearly, the results of the second

attempt are wrong, but the logical question that follows is, “What exactly went wrong?”

A comparison of the second and third attempts shows that the recognition algorithm is

very sensitive to small bends. Thus, the tiny bends at the top of the two “1” digits make a

significant difference in the outcome. This discovery leads to many more interesting

questions such as “Why is the algorithm so sensitive to bends?” and “How can the

algorithm be improved to avoid this problem?”. This type of inquiry is difficult to

motivate from a textbook or lecture since students cannot immediately test their

hypotheses. The interactive components such as the handwriting recognition applet

encourage students to explore and discover on their own, and we feel this contribution

improves the effectiveness of learning.

Figure 5.1 Handwriting Recognition Examples

5-3

Another important aspect of student engagement is the use of multiple senses in

the learning process. In summarizing their review of video media, Wetzel et al. [1994]

conclude,

The studies reviewed generally support the idea of a benefit to simultaneous
verbal and visual information when they are carefully matched. Combining visual
and verbal information in video presentations generally leads to either equal or
better learning compared to when these sources are given alone.

Similarly, Rieber [2000] cites a study [Mayer and Anderson 1991] in which students

were given the same animation to watch with and without narration. He summarizes the

results by saying,

Students given the animation along with the narration significantly outperformed
students who either in isolation watched the animation or heard the narration or
who heard the narration right before seeing the animation on the problem-solving
tasks. Even more important, the animation without the verbal description was
completely ineffective, as students in this treatment compared equally with
students provided no instruction at all.

These results explain our decision to include narration in many of the animations. The

use of narration seems particularly important, however, in the animations on binary

arithmetic. By explaining each arithmetic technique with narration, students are free to

focus their eyes on the animated illustration rather than explanatory text.

The third reason we believe the modules improve the effectiveness of learning is

the informal responses we have received from students using the modules. Fifty four

undergraduate students enrolled in Intermediate Software Design and Engineering were

asked for their opinion of the SE module which was accessible from the class web site.

The students unanimously agreed that the lessons and animations explaining the

Waterfall Model and the Spiral Model were more helpful than reading the textbook alone.

5.2 RECOMMENDATIONS FOR FUTURE WORK

Finally, we present several suggestions for future work on the learning modules.

These suggestions fall into three categories: extension work, revision work, and

assessment work.

Many possibilities exist for the extension of the current modules. First, the

modules can be extended through the addition of new modules that cover other topics in

Computer Science such as Human-Computer Interaction and Numerical Analysis. The

5-4

existing modules can also be enhanced through the addition of new lessons and

interactive components. Second, many of the interactive components can themselves be

enhanced. One example is the Memory Allocation Applet in the Operating Systems

module. One logical extension to this applet would be the addition of a pause button to

the interface so that students can pause the simulation and compare the current state of

the three memory representations. Third, the review questions can be expanded to

include “concept extension” questions that require the student to think beyond the scope

of the material presented. Consider the question of comparators for sorting. In the

Algorithms module, a numerical comparator is assumed for all the sorting examples.

However, what would need to change in the sorting algorithms if the goal was to sort

names rather than numbers? This questions embodies the principle of concept extension.

The question directs students to apply the knowledge they have learned to a similar yet

different problem.

Some revision work is also needed to maintain the consistency of the lessons and

to improve the clarity of the lessons. The first type of revision is simply a necessary evil

for any web-based entity. Over time the links within the lessons will break and need

updating. In addition, the facts about the current state of computing will become obsolete

and need revision. The second type of revision is more subtle and difficult. This work is

not simply the correction of errors but rather the arduous task of discerning how much

detail to abstract away when explaining new concepts to students. For example, the

lesson on identifiers in the Programming Languages module concludes with the

following statement:

One last note about identifiers: In most programming languages, identifiers are
required to conform to a certain format. For example, the identifiers in this lesson
all began with letters and were composed only of letters and numbers. None of the
identifiers included spaces, and constants were written in UPPERCASE letters.
This is a typical format for identifiers, and we will use this format in the rest of
the lessons.

While this word on the formatting of identifiers is certainly true, it is hardly exhaustive.

The question then becomes, “How much detail should the lesson present?” Where is the

balance between completeness and conciseness, accuracy and abstraction? Clearly, this

type of revision work requires a great deal of careful thought.

5-5

Finally, the opportunity exists for a formal assessment of the learning modules to

determine the various ways that student learning was influenced. Such an assessment

could include more detailed student critiques of the material specifying which lessons and

interactive components were particularly helpful and which were not helpful. This

information would be a valuable guide to help with the revision of the existing modules

and the extension of the work with future modules.

Bib-1

BIBLIOGRAPHY

Arase, K. (1999), “Simcir the Circuit Simulator,”
http://www.tt.rim.or.jp/~kazz/simcir/simcir.html

Arny, T. (2000), “Explorations: An Introduction to Astronomy,”
http://www.mhhe.com/physsci/astronomy/arny/student/anims/index.mhtml

Bergin, J. (1997), “Web Based Visualization,” http://sol.pace.edu/webvis/

Brookshear, J. G. (1997), Computer Science: An Overview, Fifth Edition, Addison-
Wesley, Reading, MA.

Brummund, P. (1997), “The Complete Collection of Algorithm Animations,”
http://www.cs.hope.edu/~alganim/ccaa/ccaa.html

Chang, R. (2000), “Essential Chemistry Flash Animations,”
http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml

Coutinho, M. (1996), “Virtual Memory Simulation Applet,”
http://www.isi.edu/people/coutinho

CQU (2000), “Operating Systems 85349,”
http://www.infocom.cqu.edu.au/Units/win2000/85349/Resources/Animations/

CSTC (1999), “The Computing Science Teaching Center,” http://www.cstc.org/

Decker, R. and S. Hirshfield (1998), “The Analytical Engine Online,”
http://www.brookscole.com/compsci/aeonline/course/

Denning, P. and D. Menascé (1998), “The HyperLearning Center Workbenches,”
http://cne.gmu.edu/workbenches/index.html

Enger, E. and B. Smith (2001), “Environmental Science,”
http://www.mhhe.com/biosci/pae/environmentalscience/enger7e/enger_animation
-quizzes.mhtml

Fabio, F. (1997), “Checkers Applet,”
http://www.geocities.com/SiliconValley/8381/checkers_en.html

Goerlich, R. (1996), “ELIZA Applet,” http://www.cyberloft.com/bgoerlic/index.htm

Gokey, C. (1997), “Fragmentation Example,”
http://asia.cs.bowiestate.edu/~cgokey/fragment/example.html

http://www.tt.rim.or.jp/~kazz/simcir/simcir.html
http://www.mhhe.com/physsci/astronomy/arny/student/anims/index.mhtml
http://sol.pace.edu/webvis/
http://www.cs.hope.edu/~alganim/ccaa/ccaa.html
http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml
http://www.isi.edu/people/coutinho
http://www.infocom.cqu.edu.au/Units/win2000/85349/Resources/Animations/
http://www.cstc.org/
http://www.brookscole.com/compsci/aeonline/course/
http://cne.gmu.edu/workbenches/index.html
http://www.mhhe.com/biosci/pae/environmentalscience/enger7e/enger_animation-quizzes.mhtml
http://www.mhhe.com/biosci/pae/environmentalscience/enger7e/enger_animation-quizzes.mhtml
http://www.geocities.com/SiliconValley/8381/checkers_en.html
http://www.cyberloft.com/bgoerlic/index.htm
http://asia.cs.bowiestate.edu/~cgokey/fragment/example.html

Bib-2

JERIC (2000), “ACM Journal on Educational Resources in Computing,”
http://fox.cs.vt.edu/JERIC/index.html

JARS (2001), “Java Applet Rating Service,” http://www.jars.com/

Magee, J. and J. Kramer, (1999), “Concurrency: State Models & Java Programs,”
http://www-dse.doc.ic.ac.uk/~jnm/book/index.html

Mayer, R. E. and R. B. Anderson (1991), “Animations Need Narrations: An
Experimental Test of a Dual-Coding Hypothesis,” Journal of Educational
Psychology 83, 4, 484-490.

Mitchell, B. (1998), “Java Handwriting Recognition Applet,”
http://members.aol.com/Trane64/java/JRec.html

Moosani, H. (1998), “Graphical Simulation of Disk Block Allocation Methods,”
http://unity.njit.edu/students/fall98/haritha/frame_page.htm

Naps, T., J. Bergin, R. Jiménez-Peris, M. McNally, M. Patiño-Martínez, V. Proulx and J.
Tarhio (1997), “Using the WWW as the delivery mechanism for interactive,
visualization-based instructional modules,” In Supplemental Proceedings of the
Conference on Integrating Technology into Computer Science Education:
Working Group Reports and Supplemental Proceedings (ITiCSE-WGRSP '97),
Association for Computing Machinery, pp. 13-26.

Palakal, M. (1997), “Personally Active Computing Exploration Resource,”
http://klingon.cs.iupui.edu/~pacer/index.html

Pilgrim, C., Y. Leung and D. Grant (1997), “Cost Effective Multimedia Courseware
Development,” In Proceedings of the Conference on Integrating Technology into
Computer Science Education (ITiCSE '97), Association for Computing
Machinery, pp. 45-50.

Rieber, L. P. (1990a), “Animation in Computer-Based Instruction,” Educational
Technology Research and Development 38, 1, 77-86.

Rieber, L. P. (1990b), “Using Animation in Science Instruction with Young Children,”
Journal of Educational Psychology 82, 1, 135-140.

Rieber, L. P. (1991a), “Effects of Visual Grouping Strategies of Computer Animated
Presentations on Selective Attention in Science,” Educational Technology
Research and Development 39, 4, 5-15.

Rieber, L. P. (2000), Computers, Graphics, and Learning,
http://www.nowhereroad.com/cgl/index.html

http://fox.cs.vt.edu/JERIC/index.html
http://www.jars.com/
http://www-dse.doc.ic.ac.uk/~jnm/book/index.html
http://members.aol.com/Trane64/java/JRec.html
http://unity.njit.edu/students/fall98/haritha/frame_page.htm
http://klingon.cs.iupui.edu/~pacer/index.html
http://www.nowhereroad.com/cgl/index.html

Bib-3

Schank, R. (1994), “Active Learning through Multimedia,” IEEE Multimedia 1, 1, 69-78.

Shaffer, C. A. (2000), “Statistics Activity-Based Learning Environment,”
http://simon.cs.vt.edu/SoSci/converted/index.html

Song, Q. (1997), “Simulating Memory Page Replacement,” http://iris.nyit.edu/~qsong/

Tran, Q. (1998), “Algorithm Animation Applet,”
http://www.utdallas.edu/~ilyen/animation/cpu/program/prog.html

Tsichritzis, D. (1999), “Reengineering the University,” Communications of the ACM 42,
6, 93-100.

Wetzel, C., P. Radtke and H. Stern (1994), Instructional Effectiveness of Video Media,
Lawrence Erlbaum Associates, Hillsdale, NJ.

http://simon.cs.vt.edu/SoSci/converted/index.html
http://iris.nyit.edu/~qsong/
http://www.utdallas.edu/~ilyen/animation/cpu/program/prog.html

Vita-1

VITA

William Shadwell Gilley, the son of William F. and Pamela M. Gilley, was born

on August 29, 1976, in Lynchburg, Virginia. He graduated from Timberlake Christian

High School in May 1994. He received an Academic Merit Scholarship to attend Central

Virginia Community College and graduated from this institution in May 1996, with his

A.A. degree in Business Administration. Three years later he graduated from Virginia

Tech with his B.S. degree in Computer Science and minors in Mathematics and

Professional Writing and Language. This thesis completes his M.S. degree in Computer

Science from Virginia Tech.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	STATEMENT OF THE PROBLEM
	STATEMENT OF THE OBJECTIVES
	Providing Access to the Modules via the WWW
	Teaching the Topics in an Interactive, Animated Manner
	Reusing Existing Material
	Implementing Independent, Extendable Modules

	OVERVIEW OF THE THESIS

	RELATED WORKS
	MULTIMEDIA LEARNING MATERIAL FOR NON-CS COURSES
	Essential Chemistry Flash Animations
	Explorations QuickTime Animations
	Environmental Science RealMedia Animations
	SABLE Applets

	MULTIMEDIA LEARNING MATERIAL FOR CS COURSES
	PACER
	The HyperLearning Center
	Operating Systems 85349
	The Analytical Engine Online

	ARCHIVES OF MULTIMEDIA RESOURCES

	PROJECT TOOLS AND TECHNOLOGY
	HARDWARE TOOLS
	SOFTWARE TOOLS
	Dreamweaver 2.0
	Flash 4.0
	Fireworks 3.0 and Paint Shop Pro 6.0
	Java

	COMPUTER SCIENCE ONLINE MODULES
	ALGORITHMS
	Manual Sort Animation
	Swap Operation Animation
	Simple Sort Algorithm Animation
	Insertion Sort Algorithm Animation
	Selection Sort Algorithm Animation
	Sort Quiz Applet
	Space Efficiency Quiz
	Time Efficiency Quizzes
	Selection Sort Algorithm Analysis Animation
	Simple/Insertion Sort Analysis Quizzes

	ARTIFICIAL INTELLIGENCE
	Humans Versus Computers Animation
	Checkers Applet
	ELIZA Applet
	Eight-Puzzle Applet
	JRec Applet

	DATA STRUCTURES
	Ordered Arrays Animation
	Ordered Linked List Animation
	Abstract Stack Animation
	Abstract Queue Animation
	Queue Applet
	Two-Dimensional Arrays Animation
	Graph Animation
	Bag Abstract Data Type Applet

	MACHINE ARCHITECTURE
	Data Representation Applet
	Simcir Applet
	Latch Animation
	Sum Program/Count Program Animations

	NUMBER SYSTEMS
	Conversion
	Binary to Decimal Conversion Animation
	Decimal to Binary Conversion Animation
	Decimal to Binary Conversion with Fractions

	Binary Arithmetic
	Adding Two Binary Numbers Animation
	Adding Multiple Binary Numbers Animation
	Binary Subtraction Animation
	Binary Multiplication Animation
	Binary Division Animation

	Complements
	Binary Subtraction with 1’s Complement Animation
	Binary Subtraction with 2’s Complement Animation

	OPERATING SYSTEMS
	Nursery Game Applet
	Process State Diagram
	Process Scheduling Simulation Applet
	Mutex Demonstration Applet
	Bounded Buffer Demonstration Applet
	Dining Philosophers Applet
	Memory Allocation Applet
	Virtual Memory Simulation Applet
	Simulation of Page Replacement Algorithms Applet
	File System Allocation Applets

	PROGRAMMING LANGUAGES
	Code Representations Animation
	Variables and Assignment Animation
	Simple Assignment Machine Applet
	Data Types Animation
	Selection Exercises
	Loops Demonstration Animation
	Call/Trace Power Animations
	Parameter Passing Animation
	Selection Sort Applet

	SOFTWARE ENGINEERING
	Software Engineering Quiz Applet
	Waterfall Model Animation
	Waterfall Model Review Quiz
	The Spiral Model Animation
	Selection Sort Applet
	Abstract Data Type Applets
	Inheritance Animation

	CONCLUSIONS AND RECOMMENDATIONS�FOR FUTURE WORK
	CONCLUSIONS
	RECOMMENDATIONS FOR FUTURE WORK

	BIBLIOGRAPHY
	VITA

